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Abstract

Optimally designing cyber-defenses in a network is a daunt-
ing task. In this paper, we study adaptive cyber-attackers,
which can modify their attack path in response to any cyber-
defense faced during an attack. This problem is formalized
as a min-max game played over a network graph. We give
examples where adaptive cyber-attackers are more powerful
than non-adaptive ones and show that cyber-defenses that do
not account for adaptivity can perform arbitrarily worse. We
connect the cyber-attacker’s optimal strategy with the classi-
cal theory of multi-armed bandits, yielding a simple gradient
based algorithm to solve the min-max game. Experiments on
synthetic settings validate our approach.

1 Introduction
Cyber attacks are increasingly costly, with the global finan-
cial impact of cybercrime projected to reach $23 trillion an-
nually by 2027 (US State Department 2024). A mantra in
cyber defense is “defense-in-depth”, where multiple layers
of controls and safeguards are deployed to protect networks
and critical assets. Each layer addresses specific threats or
vulnerabilities; if one layer is bypassed, others are in place
to mitigate risks.

Evaluating the effectiveness of cyber defenses requires
understanding the behavior of threat actors and assessing
how controls detect and respond to potential attacks. A sig-
nificant challenge lies in the dynamic nature of cyber op-
erations. For instance, advanced persistent threats (APTs)
can adapt to evade existing defenses. In response, defend-
ers may modify their strategies, such as deploying additional
firewalls or adjusting network configurations when indica-
tors of compromise are identified. These adjustments, like
removing network links or disabling services, aim to deter,
disrupt, and defeat attacks while maintaining operational re-
silience.

Enterprise IT networks. An Enterprise IT network con-
nects an organization’s computers, servers, applications,
and users to enable communication, collaboration, resource
sharing, and supporting business operations. Typical Enter-
prise IT networks comprise many interconnected systems
and devices, forming densely connected graphs. However,
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in practice, many enterprise services, such as emails and en-
terprise platforms, operate in parallel and are connected to a
few critical components.

One of the critical components in most Enterprise IT net-
works is the Active Directory (AD) System. The AD system
manages IT resources, such as users and computers, identi-
fies users in the network, and automates administrative tasks.
Due to the AD system’s criticality and connectedness, they
are often the prime target for cyber-attacks, as compromis-
ing the AD will allow attackers access to most resources.
The distance between users and the AD System is often very
short and contains many parallel paths through the different
enterprise services. Security controls are layered within each
service. Figure 2 shows possible controls in an email system.
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Figure 1: Example of an enterprise IT network.
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Figure 2: Simplified security controls in an Email System.

Adaptive attackers Prior work on the effectiveness of cy-
bersecurity controls models static and non-adaptive attack-
ers. Such attackers do not account for any changes in the de-
fenses that arise from the attack. Consider Figure 1, and sup-
pose an attacker has failed a password authentication check
several times while trying to access the AD via an Email
System. These failures have triggered more stringent au-
thentication, impeding future attacks via the Email System.
A non-adaptive attacker does not account for such devel-
opments and will continue trying to compromise the Email
System. However, an adaptive attacker recognizes these el-
evated defenses and pivots to other attack paths such as the
HR System or Data Platform.



This paper addresses the following question: Given that
most real-world attackers are adaptive, how should defen-
sive resources be organized? To this end, we draw upon the
successful application of game theory to security and pro-
pose a game theoretic model that accounts for the attacker’s
reactions to the defenses as cyber-attacks unfold.

Contributions. Our contributions include (i) formalizing
this problem mathematically as a game between attacker and
defender, with the optimal defense allocation as the solu-
tion to a min-max problem, (ii) drawing a direct connection
between an attacker’s optimal policy and the solution to a
multi-armed bandit problem and the Gittins index, (iii) using
the Gittins index to compute the optimal attacker response to
any defense efficiently, and (iv) computing the optimal de-
fense policy by projected gradient descent. On the theoreti-
cal front, we (v) give examples of where assuming heuristic
attacker policy (e.g., greedy) can induce poor defensive al-
locations, thus necessitating the assumption of an optimal
adaptive attacker, and (vi) analyze special cases where com-
puting an optimal attack/defense policy is much simpler.

2 Related Work
This paper spans multiple domains, including cybersecurity
modeling, game theory, and the decision-making framework
of multi-armed bandits and indexible policies.

Cybersecurity, attack graphs, and network interdiction.
Attack graphs come in many forms, often tailored by cy-
bersecurity professionals to identify specific weak points in
their network infrastructure and develop more effective in-
cident response strategies (Sheyner et al. 2002; Lippmann,
Ingols et al. 2005; Strom et al. 2018). They provide a struc-
tured representation of the attack process, mapping the var-
ious stages from initial reconnaissance to final exploita-
tion. Various models for network security have been pro-
posed. One classic model is that of (stochastic) network in-
terdiction (Cormican, Morton, and Wood 1998; Wang, Noel,
and Jajodia 2006), where the defender chooses a subset of
edges in the network to remove, subject to some budget con-
straint. Like us, they assume that the attacker is able to adapt
to the altered network. Some sub-variants confer commit-
ment advantages upon the defender (Letchford and Vorobey-
chik 2013) and some do not (Khouzani, Liu, and Malacaria
2019; Almohri et al. 2015), while others allow the defender
to disable vertices instead (Nguyen et al. 2017), or to in-
sert new “honeypot” hosts into the network (Durkota et al.
2015a,b) which can detect and incur penalties for the at-
tacker. Compared to network interdiction, our model does
not allow the defender to forcefully remove entire edges or
vertices (which drastically affects regular operations) and in-
stead models more realistic controls with internal states that
evolve based on the current attack.

Multi-armed bandits and indexable policies. Our net-
work is abstracted into a collection of parallel chains (see
Figures 1 and 2) and can be viewed as a multi-armed ban-
dits and indexible policies lens, making analysis much eas-
ier. Multi-armed bandits (MAB) are a well-known founda-
tional framework in decision-making under uncertainty due

to their theoretical elegance in balancing tradeoffs between
exploration and exploitation. In the MAB framework, a sin-
gle agent makes decisions sequentially to maximize cumu-
lative rewards by selecting from a set of n options (pulling
arms), each with uncertain and potentially stochastic reward
distributions. MABs come in many flavors, but the one most
relevant to this paper allows for random but known state
transitions within each arm, affecting rewards obtained. A
common theme in this variant of MAB is the optimality of
index policies, which states that it is possible to assign to
each state in every arm a rank (independent of all other arms)
such that the optimal policy is to pull the arm with the high-
est index. Such dynamic allocation index is now commonly
known as the Gittins index, in honor of Gittins (1979). Since
then, a huge number of extensions have been proposed, in-
cluding branching bandits and arm arrivals (Weiss 1988;
Bertsimas, Paschalidis, and Tsitsiklis 1995; Bertsimas and
Nino-Mora 1996; Whittle 1981), extensions to jobs with
precedence constraints (Glazebrook and Gittins 1981), rest-
less bandits (Whittle 1988), as well as a variant by Dumitriu,
Tetali, and Winkler (2003) minimizing the time needed to
reach a target. Advances have also been made in computing
Gittins indices; see, e.g., Chakravorty and Mahajan (2014).

Indexable policies in adversarial settings. Adversar-
ial approaches in multi-armed bandits, often called non-
stochastic bandits, focus on settings where reward distri-
butions are influenced by an adversary who dynamically
alters them at each timestep (Auer et al. 1995). This for-
mulation differs from our setting, where the defender com-
mits to a stochastic defense strategy, and the attacker faces
a rested stochastic environment. While adversarial bandits
rarely admit indexable policies, exceptions exist (Xiong and
Li 2024). Beyond purely adversarial settings, robust formu-
lations have explored problems where adversarial perturba-
tions interact with stochastic dynamics. For instance, Scully
and Harchol-Balter (2018) study job scheduling where job
ages are observed with adversarial perturbations. Simi-
larly as in adversarial bandits, attacker can further modify
these ages during execution. A variant of the Gittins in-
dex achieves near-optimal mean response times. In a re-
lated vein, Tan et al. (2018) employ Gittins indices heuris-
tically for controlling a set of pursuers, selecting among n
possible pursuing modes against unknown fixed stochastic
evader strategies. Another adversarial formulation is studied
by Gummadi et al. (2013) who perform a mean-field analy-
sis of multi-armed bandit games where a large population of
players interact with a bandit system. The aggregate actions
of all players then influence individual reward distributions.

Indexable policies in games. In spirit, our work is clos-
est to two-player game-theoretic models where one player
commits to a stochastic strategy, leading to a multi-armed
bandit problem for the other player, who responds with an
optimal index-based policy. An example is the semi-finite
zero-sum hide-and-seek game of Clarkson and Lin (2024),
where one player hides randomly among n locations, and
the seeker uses a Gittins index policy to execute an optimal
search strategy. Similarly, Fudenberg and He (2018) study a
two-player general-sum Bayesian game involving a sender



and a receiver. The sender, characterized by a type θ, em-
ploys a Gittins index policy to select an optimal signal for
the receiver who commits to a stochastic strategy.

3 Mathematical Formulation
In this paper, cyberattacks and defenses are modeled as a
game defined over graphs. The game is defined by two lay-
ers of graphs: (i) there is a single high-level graph, which we
call the the network level graph. Vertices in this graph repre-
sent IT resources that may potentially be compromised, and
edges are potential entry points and controls (if any) between
vertices, and (ii) for every edge in the network level graph,
we have an edge, or control, level graph. The control-level
graph is a Markov chain which represents the evolution of
the internal state of each control.

3.1 Network level graph
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(b) General Parallel Chains graph

Figure 3: Examples of network level graphs. Node 1 serves
as the entry point v0, double-squares represent the target.

At a macro-level, we consider a network organized as
parallel chains of controls. This is represented by a tree
G = (V, E) rooted at v0 ∈ V . Examples are shown in Fig-
ure 3, with v0 representing the entry point and leaves repre-
senting the target (e.g., the active directory). While the target
is represented by multiple leaves (e.g., vertices 2, 3, 4 in Fig-
ure 3a), they refer to the same target (e.g., AD).

Each parallel path represents an IT resource where the tar-
get could be reached; for example, a print server could con-
stitute a path leading from access point to target, while an
email server constitutes another. Each represents a distinct
means to which an attacker may eventually access the tar-
get. Edges lying in the path between v0 and the leaves rep-
resent controls that an attacker must circumvent to proceed
(see Figure 2). Since these controls are placed in series, an
attacker must circumvent all of them in a row to gain access
to the target. For example, in Figure 3b, the attacker has to
circumvent edges ((1, 2)) or ((1, 3) and (3, 5)) or ((1, 4) and
(4, 6)) in order to compromise the target.

Associated to each edge e ∈ E is the duration required
for each attempt to traverse an edge, ℓ(e) ∈ R+, which we
call its length. We write ℓ ∈ R|E|

+ . In general, we will re-
quire ℓ ∈ L, where L ⊆ R|E|

+ is some compact, convex set
(typically a polyhedron) representing the defender possible
strategies (details found in Section 3.4). For convenience,
we will suppose L is the simplex of size |E|; this simplify-
ing assumption will not dramatically affect our algorithms
or analysis. Again, for simplicity, we will focus on a class of

network-level graphs we call general parallel chain graphs
(GPCG, Figure 3b). A GPCG is a graph where all vertices
except v0 have an indegree of 1 and an outdegree of at most
1. Only the root node v0 has an indegree of 0 and an outde-
gree > 1. A special case where each chain has only a single
vertex we call a Single Layered Graph (SLG, Figure 3a).

3.2 Control state graphs
Cybersecurity applications are complicated by the fact that
controls themselves have internal states that evolve upon any
interaction with the attacker. For example, a failed attempt at
guessing a password can disable attempts for a fixed amount
of time; additional attempts increase restrictions to the point
where access is blocked entirely.

Such interactions are modeled by the control state graph.
The control state graph describes the probability of success-
fully circumventing a control given by edge e ∈ E . This
probability is governed by e’s internal control state, which
changes with each attempt via a discrete-state-discrete-time
Markov chain with a state space Se and transition function
Te(s, s

′) ∈ [0, 1], where Te specifies the probability that a
transition occurs from state s to s′. An edge’s state s(e) ∈ Se
reflects the extent to which an attacker has attempted to cir-
cumvent the controls for that edge, and includes a special
state ϕ, which indicates that the control for e has been fully
circumvented. If e has a state ϕ, then the vertex e[1] is com-
promised. Note that a vertex v is compromised if any edge e
where e[1] = v is compromised.

0 1 2 3 ... ϕ

0 1 2 3 4 ϕ

Figure 4: Example of control state graphs. (Left) graph with
infinite Se and (right) graph with finite Se and imax = 4. In
the latter, if pe(4, ϕ) = 0, then the control is “stuck” at state
4.

For this paper, we restrict ourselves to chain-like state
structures where Se = {0, 1, . . . , ϕ} and Te(i, ϕ)+Te(i, i+
1) = 1.1 In chain-like structures, the control state represents
the number of attempts that have been made to cross an edge.
There are only two transitions: success, which brings s(e)
from i to ϕ, or failure, which brings one from state i to i+1
(Figure 4). Specifying a chain structure requires specifying
Te(i, ϕ) for all i ≥ 1. Some reasonable transition functions
are:

1In general, any Markov chain would work just as well (i.e.,
the general idea behind our formulation and algorithms should
still hold). However, this more general formulation significantly in-
creases computational costs and needlessly complicates the model.



• Constant probability of success. Te(i, ϕ) = ke, for some
constant ke ∈ [0, 1]. E.g., cracking a time-based one-time-
pin. The pin is reset periodically.

• Constant work. Te(i, ϕ) = 0 if i < ke and Te(i, ϕ) = 1
if i = ke for some ke ∈ Z. E.g., doing a port scan for
unsecure ports and using a known exploit.

• Increasing probability of success. Te(i, ϕ) = 1/(ke − i)
for some ke ∈ Z+. E.g., cracking static password hashes.
The probability of cracking improves over time as the
search space of possible keys reduces.

• Exponential backoffs. Te(i, ϕ) = k̂e · kie for k̂e, ke ∈
[0, 1]. The probability of success decreases exponentially
with the number of failed attempts, and occurs when the
control throttles the rate of attempts with each failure.

• Success probabilities via beta priors. Te(i, ϕ) =
αe/(αe+βe+ i) for αe, βe > 0. Here, the success proba-
bility is governed by beta prior and its posterior is updated
based on the number of failures so far.

Other chain-like transitions could be conceived for different
types of controls. Also note that the form of Te may differ
for each edge, i.e., a network could mix and match between
different types of controls.

Finite control state graphs. To simplify analysis and im-
plementation, we allow for finite approximations. For ex-
ample, under exponential backoffs, when ke is sufficiently
small the probability of circumventing the control after a
failed attempts becomes practically 0. We thus assume that
past a particular state imax, we have Te(i, ϕ) = Te(imax, ϕ).
This then reduces to a finite control state graph. This is illus-
trated in Figure 4 for imax = 4. Note that if Te(imax, ϕ) = 0
the attacker is can be locked out from this control entirely if
the final once state imax is reached.

Monotonicity. Sometimes, Te is monotonic in i, i.e., Te is
non-increasing or non-decreasing. For example, the constant
work and hash collision examples are monotonically non-
decreasing, while exponential backoff and beta priors are
monotonically non-increasing (constant probabilities satisfy
both). The former means that subverting a control gets easier
with more attempts, while the latter models the opposite.

3.3 Attacker policy
The attacker makes decisions sequentially at discrete times
depending on the lengths ℓ, starting from time t = 0. At
any time t, every edge e ∈ E maintains its internal state
st(e) ∈ Se. Remember that st(e) reflects the extent to which
the attacker has attempted to circumvent that e’s control, in-
clusive of a special state ϕ indicating that all controls for
that edge have been circumvented. For instance, the set of
internal states for edges with controls involving exponential
backoff would be {0, 1, . . . , ϕ}, i.e., the number of failed
attempts. We denote by Φt ⊆ E the set of edges e where
st(e) = ϕ. At the start of any decision point at time t, the
attacker chooses an edge e = (vi, vj) to attempt to compro-
mise, such that there exist e′ = (vk, vi) ∈ Φt and e ̸∈ Φt.
The next decision point is at t + ℓ(e), where st+ℓ(e)(e)
evolves according to some transition function Te(st(e)), and

st+ℓ(e)(e
′) = st(e

′) for all e′ ∈ E\{e}. We denote the dis-
crete times that actions are taken by ti, starting from t1 = 0.

The run ends just after the some edge e = (vi, w) is tra-
versed, where w is a leaf, after the i-th action is completed
at ti+1. We denote this completion time as t∗. Concretely,
this is the point where there exists some path e1, e2, . . . , em
from v0 to w, where s(e1) = s(e2) = · · · = s(em) = ϕ,
i.e., a successful attack chain from the network’s entry point
to target is formed. Given a discount rate λ > 0, the attacker
then obtains exp(−λ · t∗) utility.

Optimal attacker policies. Given some fixed ℓ(e), the at-
tacker seeks to end the game such that the time-discounted
reward Et∗(exp(−λ · t∗)) is maximized. Here, the expecta-
tion is taken over any randomness in state transitions in any
edges, as well as any randomness in the attacker policy.

Example 1 (Transition functions and attacker pivoting).
Consider a single-layer network graph with two target
nodes, 2 and 3, connected to the start node via two network-
level edges, as shown in Figure 5. Assume that both edges
have a length of 1, but the individual edge control state
graphs differ: the longer (upper) edge contains two inter-
mediate states, while the shorter (lower) edge contains one
intermediate state. We will show the difference between con-
stant work and exponential backoff transition functions. As-
sume that in the constant work function, the longer edge
requires 1 try to cross, while the shorter edge requires a
constant work of 2 attempts. In this case, a = 1, b = 1,
and c = 0. The optimal policy of the attacker is to choose
the edge with the smaller constant work, resulting in the
longer edge being selected without pivoting. With exponen-
tial backoff transitions, the dynamics change. Let the longer
edge transition function have k̂ = 0.8 and k = 0.75, corre-
sponding to a = 0.8 and b = 0.6. For the shorter edge, let
k̂ = 0.7 and k = 1, giving c = 0.7. The attacker rationally
attempts the longer edge first due to the higher initial success
probability (0.8 > 0.7). If the attempt succeeds, the game
ends immediately. If it fails, however, the attacker reevalu-
ates the remaining probabilities: the longer edge now offers
a success probability of 0.6, while the shorter edge has 0.7.
The attacker then pivots to the shorter edge, maximizing the
probability of ending the game sooner. Larger networks can
exhibit even more complex pivoting, as shown in Figure 6.

MDP formulation to compute optimal attacker policies.
The problem of finding an optimal policy can be formulated
as a Markov Decision Process (MDP). We omit a formal
mathematical MDP formulation since the details are lengthy
but not illuminating and instead focus on portions relevant
to our proposed algorithm.

Let there be n chains (i.e., v0 has n children). At a high
level, the k-th chain can be seen as a Markov chain with state
space Ck, comprising elements of the form (i, j), where i is
an edge in that chain that has not yet been compromised,
and j is how many times control i (in that chain) has been
attempted. The “global” state over the entire MDP is simply
the Cartesian product C =

∏
k∈[n] Ck over the states of each

chain, while the action would be to choose a single chain and
make its corresponding Markov chain advance take a single
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Figure 5: (Left-most) Example of a single layered graph with two network-level edges (upper edge (1, 2) and lower edge
(1, 3)) corresponding to control state graphs with 2 and 1 intermediate states, respectively. The transition functions are given
by probabilities a, b, and c. (Next 3 figures) Path to compromise the network in the exponential backoff transition model when
attempts to traverse edges fail. Compromised nodes are shaded.
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Figure 6: Example in a larger network-level graph, showcasing a more complex pivoting strategy of the attacker when attempts
to cross edges fail. Control state graphs of individual edges are omitted. Compromised nodes depicted shaded.

transition. Therefore, a network with n chains, m controls
(edges) in each chain each having |S| = q states has (mq)n

states and n actions. When the global state is such that one
chains has reached a target, it receives a payoff of 1 and the
game ends (by entering a global terminal state). To account
for lengths, we allow for state dependent discounting of re-
wards, i.e., when some control e is attempted to be traversed,
it incurs a discount of exp(−λ · ℓ(e)). We can avoid relying
on state dependent discounting by introducing a probability
of 1 − exp(−λ · ℓ(e)) of transitioning to the global termi-
nal state at every transition. The optimal attacker strategy
against fixed ℓ is the solution to this MDP. A determinis-
tic, stationary (time independent) policy π : S → E assigns
each state to a choice of chain [n].

The key implication is that there exists a deterministic,
stationary attacker solution with a finite optimal value (Put-
erman 2014). Furthermore, there are a finite number of de-
terministic stationary policies π to choose from. We denote
such an optimal strategy by π∗

ℓ . We will also denote the val-
ues of such policies by V π

ℓ = Et∗ [exp(−λ · t∗)|λ, π] and
V ∗
ℓ . We omit the subscript of ℓ when its dependence is clear

from the context.
If Se are finite and ℓ(e) > 0 for all e ∈ E , then the MDP

itself is finite with strict discounting. Thus, its solution may
be theoretically found via textbook methods such as value
or policy iteration (Puterman 2014). Solving this MDP di-
rectly is however intractable, since the number of states is
exponential in the number of chains. Later, we will exploit
a simple but important observation that MDPs specified by
GPCGs in our setting can be made tractable by resorting to
index policies (Section 4.1).
Remark 1. We stress that in the MDP formulation, the at-
tacker is not traversing G by moving from vertex to vertex,
and the state space S is not the set of vertices in G.

3.4 Defender Policies
The defender selects some ℓ ∈ L ⊆ R|E|

+ , a vector con-
taining the length of each edge. Here L is some convex set
that accounts for budget or other performance constraints
on the part of the defender. For example, one may choose
a huge ℓ(e) when verifying a password. However, an ex-
tremely high ℓ(e) will dramatically deteriorate performance
for legitimate users. For instance, a reasonable L could be
the (nonempty) polyhedron given by {ℓ ∈ R|E|

+ |Aℓ+c ≥ d}.
For the rest of the paper and our experiments, we assume
L = ∆|E| = {ℓ ∈ R|E|

+ |1T ℓ = 1}, the simplex of size |E|.
For any fixed ℓ, the attacker’s optimal play yields an ex-

pected discounted utility of V ∗
ℓ . The defender’s objective is

select ℓ to minimize V ∗
ℓ , i.e., it solves the min-max problem

min
ℓ∈L

V ∗
ℓ = min

ℓ∈L
max
π

V π
λ = min

ℓ∈L
max
π

Et∗ [exp(−λ · t∗)|ℓ, π].

First observe that V ∗
ℓ is finite, since exp(−λ · t∗) ≤ 1.

Second, it is also convex in ℓ because it is the pointwise
maximum over a set of convex functions (and Et∗ [exp(−λ ·
t∗)|ℓ, π] is convex in λ). Since L is compact, a minimum
exists and is attainable.
Remark 2. Interestingly, if we allow the attacker to play a
random policy (of which there are a finite of for finite Se),
then (i) the value of this min-max problem remains the same,
and (ii) the minimax theorem holds (v. Neumann 1928; Sion
1958), implying that a random policy performs at least as
well for any choice of ℓ ∈ L. Computing such a Nash equi-
librium is beyond the scope of this paper.

3.5 Heuristic attackers and their suboptimality
An alternative to an optimal (and complicated) attacker is
one utilizing heuristics. Three heuristics come to mind:



• Constant. An attacker chooses and sticks to a single chain
throughout, never pivoting to another chain.

• Greedy. A greedy attacker looks at the set of adjacent con-
trols to be circumvented and picks the one that has the
highest discounted probability of being circumvented in
the next attempt, i.e., at time t for a edge e with control
state st(e) = i, Te(i, ϕ) · exp(−λ · ℓ(e)). The myopic at-
tacker makes the most “immediate progress”, irrespective
of how future controls lead to the target.

• Greedy probability. Choose the adjacent control most
likely crossed in the next attempt, (i.e., max Te(i, ϕ)).
These attacker heuristics are highly (in fact, arbitrarily)

suboptimal compared to the optimal policy, as shown below.
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Figure 7: Example of a graph where a constant player may
fail to reach a target entirely by not pivoting. (Left) A net-
work level representation. (Right) Control state graphs of the
top and bottom edges.

Example 2 (Suboptimality of constant heuristic). Figure 7
depicts a network with two network-level edges. Assume the
ℓ(e) = 1 and λ = 1. At the beginning, the upper edge is
preferred by a constant attacker due to its higher utility of
0.9 exp(−1)+(1−0.9) exp(−∞) ≈ 0.33, compared to the
lower edge’s utility of 0.5 exp(−1) + (1− 0.5) exp(−2) ≈
0.25. Thus, it selects the upper edge. However, if the first at-
tempt fails, the state of the upper edge moves to the shaded
absorbing state and the constant attacker becomes perma-
nently stuck. In contrast, after such an initial failure an opti-
mal attacker pivots to the lower edge.
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Figure 8: Graph where a greedy player traverses n−1 chains
before pivoting to an optimal chain. (Left) A network level
representation. (Right) Control state graphs of [top] edges
(1, 2), . . . , (1, n), [middle] edges (2, target), . . . , (n, target),
and [bottom] edge (1, ∗).

Example 3 (Suboptimality of greedy heuristic). Now con-
sider a network with k chains in Figure 8. The right side of
the figure shows individual control state graphs for the first
and second layer in the first k − 1 chains, and the edge con-
necting the last chain, respectively. Assume again ℓ(e) = 1
and λ = 1. In this network, the first k − 1 chains lead
to targets that are unreachable due to absorbing states in
the second-layer control state graphs. However, a greedy at-
tacker does not account for the future. For ϵ ∈ (0, 0.5), the
first k − 1 chains are strictly preferred by a greedy attacker
over the bottom chain. Hence, a greedy attacker attempts the
first k − 1 chains first, spending at least k − 1 timesteps to
do so before pivoting to the bottom chain. In contrast, an op-
timal attacker disregards the first k − 1 chains and immedi-
ately focuses on the bottom chain. The expected discounted
reward of a greedy attacker is less than 0.5 · exp(−k), expo-
nentially worse than the optimal of 0.5 · exp(−1).

Examples 2 and 3 show how heuristic attackers may be
highly suboptimal against a fixed ℓ. One may still hope that
such heuristic attackers could help in approximating the op-
timal defender ℓ. Unfortunately, this turns out to be untrue.
Example 4 (Exploitability of optimal ℓ allocation against
greedy attacker). Consider again Example 3 and a greedy at-
tacker, except ℓ is not fixed. A defender can “trick” a greedy
attacker into wasting time to attempt the first k − 1 edges.
To achieve this, it increases the length of each edge in the
first k − 1 chains by 1 + ln(0.5 + ϵ)− ln(0.5), just enough
to make the greedy attacker indifferent between the upper
and bottom chains (or more precisely, to prefer the upper
chains slightly). At this point, increasing ℓ(e) for the first
k − 1 edges increases the total expected time by at least
1+1 ·0.5 = 1.5, compared to 1 in the bottom edge. In other
words, the optimal defender policy is to increase ℓ over the
first layer of edges in the upper k− 1 chains uniformly until
attacker indifference. Further increasing the lengths of these
edges would require simultaneously increasing the length of
the bottom edge to prevent the attacker from pivoting.

However, an optimal attacker would never traverse any
edges in the upper chains since it knows there is no chance
of circumventing the downstream control. Thus, such an al-
location of ℓ is highly inefficient, spending less than 1/k of
the budget on the only edge that matters (the bottom one).

4 Computing Optimal Policies
Given that V ∗

ℓ is convex in ℓ, the simplest approach towards
finding the optimal ℓ is projected subgradient descent. To
do this, we require some subgradient of maxπ V

π
ℓ , which

can be done by appealing to Danskin’s theorem (Bertsekas
1997), giving g = ∇ℓV

∗
ℓ . In particular, our implementation

using the regret matching (Algorithm 1) method by Hart and
Mas-Colell (2000) and is straightforward. At each iteration
j, we compute the optimal attacker strategy; with this on
hand, we obtain g via stochastic samples of ∇ℓV

∗
ℓ via sam-

pling, and finally, we update ℓ(j+1) using the sampled g.

4.1 Optimal Attacker Policies via Gittins Indices
As it turns out, the optimal policy π∗

ℓ for fixed ℓ can be ef-
ficiently computed by appealing to the Gittins policy and



Algorithm 1: Regret Matching for optimizing ℓ

ℓ(1) ← 1 · 1
|E| , {Initialize lengths}

y(1) = 0 · 1
|E| {Initialize regret}

for j = 1, . . . , jmax do
π(j) ← ATTACKEROPTIMALSTRATEGY(ℓ(j))
g(j) ← SUBGRADIENT(ℓ(j), π∗

ℓ(j)
)

y(t+1) ← y(t) + 1⟨g(j), ℓ(j)⟩ − g(t) {Update regrets}
if y(t+1) is not all ≤ 0 then

ℓ(j+1) ← max
(
y(j), 0

)
/
∑

e max
(
y(j)(e), 0

)
else
ℓ(j+1) ← 1 · 1

|E| {Set ℓ(j+1) to be uniform}
end if

end for
return

∑jmax
j ℓ(j)/jmax {Return average strategy}

index. Recall the MDP formulation of the attacker’s opti-
mal policy (Section 3.3) and the state representation for the
k-th chain given by Ck. Essentially, the exponential-sized
MDP may be sidestepped by isolating each chain indepen-
dently of the rest and computing the Gittins index αk(i, j)
for every chain state in c = (i, j) ∈ Ck. Then, the cel-
ebrated theorem of Gittins (Gittins, Glazebrook, and We-
ber 2011) states that the optimal attacker strategy is to se-
lect the control corresponding to the chain with the highest
index, argmaxk∈[n] αk(ik, jk), where ik, jk is the current
chain state of chain k. The crucial takeaway is that αk can
be computed solely as a function of ik, jk, independently of
the other states of other chains. Yet, the indices αk(·, ·)’s are
compared across chains when determining the π∗. The Git-
tins index for a given (ik, jk) is given by:

αk(ik, jk) = max
τ>0

E[R · exp(−λ · τ)]
E[
∫ τ

0
exp(−λ · t)dt]

, (1)

where τ is a strictly positive stopping time and R is an
indicator random variable denoting whether the target was
reached. The numerator in (1) is the expected discounted re-
ward under the optimal stopping policy (possibly 0), and the
denominator is the expected discounted time. In the special
case of SLGs (Figure 3a), the following theorem follows.
Theorem 3 (Gittins, Glazebrook, and Weber (2011)). Sup-
pose G is a single-layered graph. Then we have: (i) if all
controls have Te(·, j) monotonically non-increasing in j,
then the greedy-probability attacker policy (Section 3.5) is
optimal, and (ii) if Te(·, j) is monotonically non-decreasing,
then the constant chain (non-pivoting) attacker policy (Sec-
tion 3.5) is optimal.
Remark 4. The Gittins policy has many variants, the most
common of which optimizes discounted cumulative rewards.
Unlike our setting, the game ends once any leaf is compro-
mised. Thankfully, a standard result from queuing theory
guarantees equivalent optimal policies in both settings (Git-
tins, Glazebrook, and Weber 2011).

Computing the Gittins Index. For the k-th chain, stan-
dard methods for computing Gittins index require cubic time

in the number of states (|Ck|). However, additional speedups
may be enjoyed because each control itself is a chain.

Theorem 5. Consider a chain comprising m monotonically
non-increasing controls, each with control graphs with q
states. The Gittins index for all mq elements of Ck can be
computed in O(m2q) time.

Proof. Our algorithm follows standard methods to comput-
ing Gittins indices (Gittins, Glazebrook, and Weber 2011)
based on state elimination.2 Our algorithm computes Git-
tins index for each of the |Ck| = mq elements in decreasing
order. In iteration z, we look at all Ck − z + 1 un-added
elements in Ck and find the element with the next highest
Gittins index. However, because of monotonicity, we only
need to check m, not mq of them. In addition, because of
the chain structure, finding this next highest element only
requires O(m) amortized time.

4.2 Performing gradient descent
Once π∗

ℓ is found, the second half of Algorithm 1 finds ap-
proximate subgradients and takes a gradient step. In this
paper, we adopt the regret matching algorithm of Hart and
Mas-Colell (2000). The uniform average of the iterates gen-
erated by RM is guaranteed to converge to the optimum, in
the sense that the duality gap decreases at a rate ofO(1/

√
T )

The main technical challenge is to compute V ∗
ℓ and its sub-

gradient with respect to ℓ. We are unaware of a procedure
to obtaining exact subgradients of V ∗

ℓ
3. Thus, we rely on

stochastic subgradients by running Z ≥ 1 simulations under
π∗ and taking averages of the subgradients with respect to ℓ
of every simulation.
Remark 6. In SLGs, subgradients of V ∗

ℓ can be easily be
obtained without sampling, because any control successfully
passed ends the game. Computing this expectation does not
require “branching” and can be done in O(nmq) time.
Remark 7. An earlier version of this paper utilized online
mirror descent/Hedge, which has the practical downside of
requiring an appropriately chosen step size that cannot be
too large. This was the source of a significant amount of nu-
merical instability which was avoided by employing regret
matching instead. We have also implemented a newer vari-
ant that computes exact V πℓ and its (sub)gradients in poly-
nomial time. It’s implementation is beyond the scope of this
paper, albeit significantly faster than most choices of Z. At
any rate, we observed that with sufficiently many samples
(e.g., Z ≥ 1000), the resultant ℓ is virtually the same.

5 Experiments
For simplicity, we consider chain graphs of n parallel chains
each with m = 3 controls and monotonic controls (Sec-
tion 3.2). We consider two types of controls: those using
exponential backoffs and beta priors. We randomly sam-
ple k̂e, k̂e, αe, βe uniformly in [0.2, 0.8]. For each case, we
fix the class of controls with randomized hyperparameters,

2A full, formal proof would require delving into the details of
prior work. Hence, we provide only a sketch.

3Very recent follow-up work presents a algorithm for doing so



n λ GIvGI GRvGR GRvGI GIvGI
GRvGI

GRvGR
GRvGI

3 0.5 4.0e-1 3.4e-1 4.9e-1 0.82 0.69
3 1.0 2.6e-1 2.1e-1 3.9e-1 0.67 0.54
3 2.0 1.5e-1 1.4e-1 2.3e-1 0.65 0.61
3 5.0 3.4e-2 2.9e-2 4.9e-2 0.69 0.59
3 10.0 4.7e-3 4.0e-3 8.1e-3 0.58 0.49
5 0.5 5.9e-1 4.8e-1 7.1e-1 0.83 0.68
5 1.0 4.4e-1 2.9e-1 6.1e-1 0.72 0.48
5 2.0 2.7e-1 1.5e-1 5.1e-1 0.53 0.29
5 5.0 9.1e-2 8.1e-2 2.0e-1 0.45 0.40
5 10.0 2.3e-2 3.4e-2 5.7e-2 0.40 0.60
8 0.5 7.2e-1 5.4e-1 8.7e-1 0.83 0.62
8 1.0 5.7e-1 3.4e-1 8.2e-1 0.70 0.41
8 2.0 3.9e-1 1.6e-1 7.0e-1 0.56 0.23
8 5.0 1.7e-1 1.1e-1 2.9e-1 0.59 0.38
8 10.0 6.0e-2 7.7e-2 1.6e-1 0.38 0.48

Table 1: Results for controls utilizing exponential backoffs.

n λ GIvGI GRvGR GRvGI GIvGI
GRvGI

GRvGR
GRvGI

3 0.5 6.0e-1 3.4e-1 7.7e-1 0.78 0.44
3 1.0 4.2e-1 2.1e-1 6.4e-1 0.66 0.33
3 2.0 2.2e-1 1.4e-1 3.8e-1 0.58 0.37
3 5.0 5.0e-2 2.9e-2 8.7e-2 0.57 0.33
3 10.0 6.2e-3 4.0e-3 1.0e-2 0.62 0.40
5 0.5 7.3e-1 4.8e-1 9.3e-1 0.78 0.52
5 1.0 5.6e-1 2.9e-1 8.7e-1 0.64 0.33
5 2.0 3.6e-1 1.5e-1 7.4e-1 0.49 0.20
5 5.0 1.3e-1 8.1e-2 3.3e-1 0.39 0.25
5 10.0 3.1e-2 3.4e-2 6.7e-2 0.46 0.51
8 0.5 8.1e-1 5.4e-1 9.9e-1 0.82 0.55
8 1.0 6.8e-1 3.4e-1 9.7e-1 0.70 0.35
8 2.0 4.9e-1 1.6e-1 8.9e-1 0,55 0.18
8 5.0 2.3e-1 1.1e-1 5.7e-1 0.40 0.19
8 10.0 8.5e-2 7.7e-2 2.1e-1 0.40 0.37

Table 2: Results for controls utilizing beta priors.

namely n and λ. For each hyperparameter, we ran 5 exper-
imental runs and reported averages. The experiments were
implemented in Python and run on a Macbook Pro M1 with
16GB of RAM (memory was not a limiting factor). We run
Algorithm 1 for 2000 iterations each and used the average ℓ
returned by Algorithm 1 for evaluation of V πℓ . 4

Quantitative Results. The results are reported in Tables 1
and 2 for varying values of n and λ. The columns of the form
“XvY” report the average rewards obtained by the attacker.
The first term X refers to the attacker model that the de-
fender optimized ℓ against (which could depend on ℓ, e.g.,
the policy induced by the Gittins index), while the second
term Y refers to the opponent faced at test time. The col-
umn containing GIvGI

GRvGI is the (multiplicative) suboptimality

4In an earlier version, we sampled 100000 playthroughs to ob-
tain empirical averages of V πℓ ; an updated method allowed us to
efficiently and exactly compute this without resorting to sampling
(Remark 7). There is essentially no quantitative difference in eval-
uation, though the exact method is much faster.

of the defender. This tells us how much worse it gets when
the defender assumes the attacker is greedy, but the actual
attacker is optimal. This ratio should be strictly lower than
1, and highlights the importance of accounting for the at-
tacker’s adaptive behavior. The column containing GRvGR

GRvGI is
the misevaluation that can occur. The numerator is the payoff
the defender thinks they will get against the greedy attacker,
while the denominator is what they actually get when the
attacker turns out to be optimal. If this number is very low,
then the defender would be misled into thinking that it has
much stronger defences than in reality.

We perform some sanity checks. For a fixed n, as λ in-
creases, both [GIvGI] and [GRvGR] decrease. This is ex-
pected, as the reward at the end is more highly discounted.
Conversely, if we fix λ and vary n, we see that [GIvGI]
and [GRvGR] increase. This is again unsurprising: as n in-
creases, there are more attack paths to pivot to, forcing the
defender to spread its defenses thinly. Next, we observe that
GRvGR
GRvGI was consistently less than 1 for all experiments. In
other words, a defender who optimizes (and tests against)
a greedy attacker will be significantly overconfident when
facing off against an optimal adaptive attacker.

Exploitability of heuristic-attacker models. We observe
that in all cases GIvGI

GRvGI is lower than 1. This implies optimiz-
ing against an optimal attacker is more effective than the
greedy heuristic. This supports our claim that a defender
should optimize based on the true min-max formulation
rather than to rely on heuristic attackers.

Computational costs. We observe that computational
costs scale roughly linearly with n, primarily because Git-
tins indices are computed independently for each of the n
chains. This is practically significant, as the naive MDP
formulation has exponentially many states. More investiga-
tion is required as other factors are involved, e.g., sampling
time required for stochastic gradients, arguably more costly
than Gittins index computation. Our stochastic subgradient
method took no more than 1000 seconds, while experiments
for beta priors (Table 2) were around 5 times faster.

Qualitative observations. In general, more ℓ is allocated
to the controls at the front, as these must be circumvented
before the later controls. In some rare cases, stronger con-
trols are placed at the end of the chain, particularly when Te

is such that the attacker must attempt to cross multiple times.

6 Conclusion

In this paper, we studied the effect of adaptive cyber-
attackers and the impact that adaptivity has on optimal de-
fender policies. Our min-max formulation gives the opti-
mal defense against an optimal adaptive attacker. Our pro-
posed algorithm based on running gradient descent on the
optimal Gittins policy yields promising results superior to
those based on heuristic-based attackers. Future work in-
cludes scaling up and stabilizing our gradient method and
extending the network graph beyond parallel chain graphs.
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