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1. Motivation
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• It is known that in 2-player general sum games, extensive-form correlated 
equilibrium (EFCE) can lead to higher social welfare (SW) [1, 2]. Players in 
the benchmark game Battleship can be incentivized by a centralized mediator 
to deliberately avoid shooting at their opponent, leading to peaceful outcomes.

• EFCE is a superset of CE. Players only receive recommendations for the
information set they are currently in. Players who deviate from 
recommendations no longer get recommendations for the rest of the game.

• Computationally difficult. NP-hard to find SW maximizing EFCE. In games 
without chance, can be done in polynomial time, though quadratic in the size 
of the game tree. Example: Battleship on a board of size 3x2, time horizon of
4, and a single ship of size 2x1 has a correlation plan of size > 100M.

• A crucial component of successful bots is subgame resolving, or search. In 
perfect information games (e.g, chess), one applies search online in actual 
play. Resolving is only initiated from states encountered in actual play

• Extends to imperfect information games (aka continual resolving, search). 
Notable success in zero-sum game solvers (Libratus, DeepStack [4, 5]). 

• Limited success outside of zero-sum or cooperative games, with some initial 
work in applying general-sum Stackelberg extensive form games [6]. 

• Follow blueprint (typically from a simple abstraction of the original) strategy, 
computed offline in at the start of the game. Upon entering a subgame, a 
refinement is computed online only for the subgame entered. 

• Refinements can be unsafe: Performing resolving based on initial state 
distributions (of the subgame) of the blueprint can be counterproductive.
• Since players know that refinement would be performed upon entering subgame, they can 

respond to refinement even before entering the subgame.

2. Subgame Resolving

3. Our Contributions
• First resolving algorithm for EFCE

• Polytope of correlation plans Ξ does not have a clear hierarchical structure. 
• We “divide” Ξ into subgames and show that there is sufficient independence between each 

partial correlation plan to perform refinements independently
• Define notions of safety for EFCE

• We play the role of a mediator and seek to (i) improve social welfare and (ii) reduce 
exploitability. Refinements are safe if applying resolving to every subgame gives a refined 
strategy that outperforms the blueprint in SW and exploitability.

• Propose 2 algorithms to achieve safe resolving

4. Partial Correlation Plans and Refinements
• Assume game is 2 player, has no chance, and perfect recall

• Ξ can be represented by a 2D grid indexed by sequence pairs (𝜎!, 𝜎"), where sequence form 
constraints are obeyed by each row and column. [1]

Probs of leaves Strategy deviating player expects to be facing

𝜉 ∅, ∅ = 1
𝜉 ∅, ∅ = 𝜉 𝐺, ∅ + 𝜉 𝐵, ∅
𝜉 𝐺, ∅ = 𝜉 𝑋! , ∅ + 𝜉 𝑌! , ∅
𝜉 𝐵, ∅ = 𝜉 𝑋" , ∅ + 𝜉 𝑌𝑧" , ∅
𝜉 ∅, ∅ = 𝜉 ∅, ℓ# + 𝜉 ∅, 𝑟#
𝜉 ∅, ∅ = 𝜉 ∅, ℓ$ + 𝜉 ∅, 𝑟$

If	P1was	recommended	
𝑋! and is considering deviating to Y! , it	will	consider	
probability	that	P2	plays	ℓ$ , 𝑟$ (given	in	blue)

Sequence form 
constraints for first col.
Sequence form 
constraints for first row.

• Polytope of partial correlation plans Ξ𝑗
• Contains 𝜎!, 𝜎", both belonging to subgame 𝑗 or occur before any subgame. 
• Valid refinement $𝜉#: if 𝜎!, 𝜎" occur before subgame, $𝜉# 𝜎!, 𝜎" = 𝜉$ 𝜎!, 𝜎" , i.e., we cannot 

change what has happened in the past once inside a subgame.
• Sequence form constraints are the same as Ξ (where the sequence pair exists) 

• Partial correlation plans are close to independent from each other
• For valid refinements of blueprint 𝜉$, sequence form constraints do not “intersect” 

• When performing refinements, we need to only consider valid refinements in Ξ𝑗
• The fully refined strategy &𝜉 ∈ Ξ that players see when considering deviations is obtained by 

“piecing together” partial refinements.
• Note: we do not explicitly compute full refinements. However, we will need to reason about the 

social welfare and exploitability of it in order to guarantee safety.

5. Refinement Algorithms

Partial	refinement	(actual	computation) Complete	refinement	(what	players	“see”)
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• Phase 1: compute bounds on player payoffs which guarantee safety
• For each recommended sequence not belonging to a subgame, we compute (i) upper-

bounds on how well a player does upon deviating and (ii) lower bounds on how much a 
player gets if it abides to this (and all future) recommendations

• Obeying these bounds ensure that exploitability is no greater than the blueprint
• Uses a method similar to prior work by Ling and Brown, used in Stackelberg games [6]
• Blueprint satisfies these bounds trivially.

• Phase 2: Find valid refinement in Ξ𝑗 which respects these bounds
• Method 1: Builds off the Linear Programming method first proposed by Von Stengel [1]. 

Bounds are enforced by adding them directly as linear constraints. Having a higher social 
welfare follows by putting it as the objective to be maximized.

• Method 2: Builds off a newer regret-minimization method based on self play [3] between 
deviator and mediator. Bounds enforced by expanding the set of deviators. Perform binary 
search to achieve a social welfare no worse than blueprint.

• Both methods: Safety for deviating sequences within subgame is handled by the original

6. Experiments
• Evaluated our method on the Battleship benchmark game

• Blueprints: (i) the uniform, independent blueprint, and (ii) a jittered alternative. 
• Subgames begin after 1st round of shooting.

• Experiment 1 (left). Maximize social welfare using LP solver
• Significant improvement in social welfare for both blueprints

• Experiment 2 (right). Minimizing exploitability only using regret minimization

7. Future Work
• Extensions to other forms of correlated behavior
• Explore possibility of learning values (as with DeepStack)
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