
Safe Search for Stackelberg Equilibria in 
Extensive-Form Games
Extensive Form Games (EFG)
Game tree use to model settings with sequential interactions
Imperfect information modeled by information sets 
• Perfect recall: never forget your own past actions or observations
Very general formulation with many applications
• e.g., Poker (and bots Libratus and DeepStack)

Causes of Unsafe Search

Experimental Setup

Chun Kai Ling1, Noam Brown2

1 Carnegie Mellon University
2 Facebook AI Research

chunkail@cs.cmu.edu, noambrown@fb.com

Safe Search

L R

a b a b

Use blueprint 
strategy computed 
offline

Compute refined 
strategy online 
only for subgame 
entered

Path of actual play

A crucial component of successful bots these days is search. In perfect information 
games like chess, one applies search to a limited depth and continues search in 
actual play. Hence search is only initiated from states encountered in actual play.
The natural analogue in games of imperfect information is for a blueprint (typically 
from a simple abstraction of the original) to be computed offline and followed in 
actual play. Upon entering a subgame, a refinement is computed online only for the 
subgame entered. However, unlike perfect information games,
• Different distribution over states, depending on the previous actions taken by both

players. 
• Search can be unsafe: Performing search carelessly can result in a strategy 

which is worse than the blueprint. 

Strong Stackelberg Equilibria (SSE)
Used 2-player general-sum games with a distinguished leader (P1) and follower (P2)
Leader enjoys commitment privileges 
• Commits to a (mixed) strategy before the game starts
Follower best-responds to leader’s strategy
• Strong Stackelberg Equilibrium (SSE): In the event of a tie, follower chooses strategy 

which yields highest payoff to the leader.
Applications in Security Games
• Strong Stackelberg Equilibrium (SSE): In the event of a tie, follower chooses strategy 

which yields highest payoff to the leader.
Solving SSEs in EFGs is NP-hard in general
• Special cases: games without chance, perfect information, normal form games
• Existing methods rely on heuristics/strategy generation. No online method exists yet.

Our contributions
Safe search is primarily applied to zero-sum games. Our work applies safe 
search to finding SSE in extensive form games, where the leader is the 
player performing search. We also show that the refinement step in our
algorithm can be reformulated as finding the SSE of a modified game, meaning
our method is complemented by fast offline solvers.

(I) Follower changes pre-subgame actions

• Blueprint: follower plays (S1, X2), leader payoff =1.5
• Under Naïve Search, if follower continues playing (S1, 

X2), leader payoff = 2. However, follower best-
responds and switches to (X1, S2), leader payoff = 0.5

• Blueprint performs better than refinement---unsafe
• Problem: follower is incentivized to deviate from 

blueprint best response because of search
• Can prevent this by enforcing upper and lower 

bounds on follower payoffs.
(II) Multiple subgames

• Suppose leader applies subgame search only to the left 
subgame. Under the blueprint,, follower plays S, leader 
payoff = follower payoff 1. Under refinement, leader 
payoff = 1.5, follower payoff = 0. Game appears to be 
safe (tiebreaks favor leader). 

• However, follower knows that if search is applied to the
left subgame, it would also have been applied to the 
right subgame if it was reached. 

• Hence, search is applied to all subgames, follower payoff 
= -1, leading to the follower choosing X over C---unsafe.

• Well known issue in zero-sum settings. 
• Problem can be averted by again enforcing bounds.

Important: Follower best responds to the entire subgame search algorithm, and not the 
blueprint. That is, follower knows the “source code” of the leader and best responds to it.

Our algorithm
Phase 1: Bounds computation
• Computes bounds that guarantee that follower not deviate from blueprint prior to subgames
• Done recursively top-down and may contain upper and lower bounds. Lower bounds are for 

information sets which are traversed, while upper bounds otherwise.
• Requires a single pass of a player’s treeplex (no bigger than game tree)
Phase 2: Computing a refinement
• Solve the SSE of subgame which respects aforementioned bounds.
• Direct method: Plug linear constraints into mathematical programs. 
• Gadget method: Reformulate the constrained SSE problem as a solution to another SSE.

Compare with MILP-based full-game solver run for max of 1000s
• If the solver has not run to completion, we take the best incumbent solution
For evaluation, run subgame search (refinement step) using the direct method
• Done for all subgames for maximum of 100s each.
• Combine solutions together to obtain approximate full-game solution
• Done only for purposes of evaluation---in practice, will only run refinement in 

subgames that are encountered in actual play.
All MILPs were solved using Gurobi.
Initialization of strategies (both online and offline) to be blueprint
• In larger games, full-game solver does not even find a feasible solution in 1000s 

without the blueprint

2-Stage Game
Randomly generated Markov game (almost) with 2 stages
Blueprint: SSE of first stage alone, randomly take actions in second stage.
Our method performs better for the leader for the larger games.
Sanity check: our method performs better than blueprint in all cases.

Rake Poker
Simplified game of poker with n cards, 2 suits, and 2 betting rounds.
Rake: dealer takes 10% of pot every game. 
Blueprint: Nash of zero-sum version of the game.

Bounds generation using a gadget

To enforce lower bounds:
Insert auxiliary state(s) A’ with (−∞ , 
<bound>) leader payoffs

If follower payoff is less than <bound>, 
follower terminates and gives leader −∞

Enforcing upper bounds:
Insert auxiliary state(s) B’ with (0, <bound>) 
leader payoffs

If follower payoff is greater than <bound>, 
follower continues and gives −∞ leader payoff

Important: Follower responds to the entire subgame search algorithm, and not the 
blueprint. That is, follower knows the “source code” of the leader and best 
responds to it.

1 Part of this work was conducted when the author was an intern at Facebook AI Research

mailto:chunkail@cs.cmu.edu
mailto:noambrown@fb.com

