What game are we playing”? End-to-end Learning in
Normal and Extensive Form Games

Chun Kai Ling’, Fei

Department of Computer Science’, Institute for Software Research?, Carnegie Mellon University

Bosch Cente

Fang?, J. Zico Kolter'?

r for Artificial Intelligence?

chunkail@cs.cmu.edu, feifang@cmu.edu, zkolter@cs.cmu.edu

1. Motivation

e Our objective is to learn underlying utilities of agents in
Zero-sum games by only observing player actions.
e Game theory finds optimal strategies based on known

payoffs. Our setting, sometimes known as inverse game e Prior work either ignores
context, or are restricted to
special structural properties
(e.g., symmetry in
Vorobeychik, 2007).

theory (Kuleshov, Waugh et al, 2011) is the reverse.

e | earning the underlying utilities allows us to better
understand the problem, as opposed to directly
predicting strategies from context.

3. Contributions

We assume that players act according to the logit Quantal
Response Equilibrium (QRE, McKelvey, 1993).

e \We propose a differentiable game solver to find the QRE.
e \We derive gradients for ‘differentiating through’ game
solutions, allowing for training to be done end-to-end using
stochastic gradient descent to minimize log-loss.

e Our method scales up to larger extensive form games by
exploiting the sequence form representation.

Successfully learned payoffs for a range of synthetic data.

4. Normal Form Games

Solution for QRE in zero-sum games is unique,
smooth, and equivalent to a min-max problem with
entropy regularization.
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e Convex-concave problem: efficient solution with
Newton’s method
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e Implicit differentiation (Dontchev & Rockafellar, 2009)
vields gradients for backpropagation expressed by
Jacobian of KKT conditions (Amos & Kolter, 2017)
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6. Experiments

A. Featurized Rock-Paper-Scissors

Payoffs for each combination is a linear combination of
2 features. Goal is to learn 3x2 matrix of parameters.
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e Able to learn parameters and accurately predict player
strategies even in novel contexts.

B. One Card Poker

Variant with 4 cards and nonuniform card distributions.
e | earn players’ perceived card distributions from
actions of player (these may not be true distributions).
e Card distributions are embedded within payoff matrix.
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3 sets of experiments (each with different distributions). Each
experiment is run 5 times. Error bars denote standard errors

e Results show that learning of attributes other than actual
payoffs is possible (e.g. strategies of chance player).
e Able to learn when payoffs are nonlinear in parameters.

e Given a context x, we predict

a matrix P(x), adapting to

novel situations.
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Algorithm 1: Learning parameters ® using SGD

Input: training data {(z(?,a(")}, learning rate 7, ®ini

for ep in {0,...,ep,,,.} do

end

Sample (29, a()) from training data;
Forward pass: Compute Py (z(), QRE (u,v) and loss L(a¥,u,v);
Backward pass: Compute gradients V,L,V,L,VpL,VgL;

Update parameters: ® < & —nVglL;
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differentiable module
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5. Extensive Form Games

e \We apply sequence form representation (Von Stengel, 1996) for
computational efficiency.

e Dilated entropy regularization: entropy of behavioral strategy
weighted by probabilities (in isolation of chance and other players).

min max u’! Pv + 5 S il

€L, acA;

log - _ Sj S: v, log

upz’

€L, acA;

U(l,
Upz‘

Fu—e=0,

Fv—f=0

e [heorem: solution with dilated entropy regularization is realization
equivalent to QRE of the game in reduced normal form.

e Solutions to min-max problem are obtained using Newton’'s method.
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Newton Step (full details in paper)

e Gradient expressions are identical to the normal form case (sec. 4).

C. Resource Allocation Security Game

e There are N distinct targets with differing values. K defensive
resources are split between each target. Each resource stops an
attack with independently with probability 0.5.

(0,3) (1,2) (2,1) (3,0)
Target 1 —R4 —Ry/2 | —R{/4 | —R,/8
TargEt 2 _R2/8 _R2/4 _Rz/z _R2

Example payoffs with N=2 and K=3

e Diminishing returns implies defender should spread his resources.

e The game proceeds in T iterations. After each iteration, the attacker
Is informed if the attack was successful and is allowed to alter his
strategy. The defender is not allowed to reallocate his resources.

e |t is unlikely that one obtains data from both attacker and defender.

e Our goal is learn target values using only the defender's actions.
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Error bars denote standard errors. Results are for N=2, K=5, T=1 (right) and T=2 (left).
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7. Conclusion

e |ssues regarding nonidentifiability occur with overparameterization.
e Future work include faster solvers for larger extensive form games,
extension to non zero-sum games and application to real datasets
and other domains (e.g. RL).



