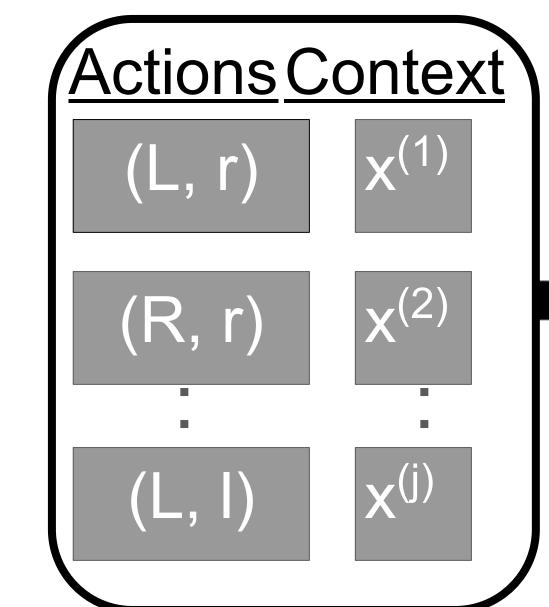
What game are we playing? Differentiably learning games from incomplete observations Chun Kai Ling¹, J. Zico Kolter¹, Fei Fang²

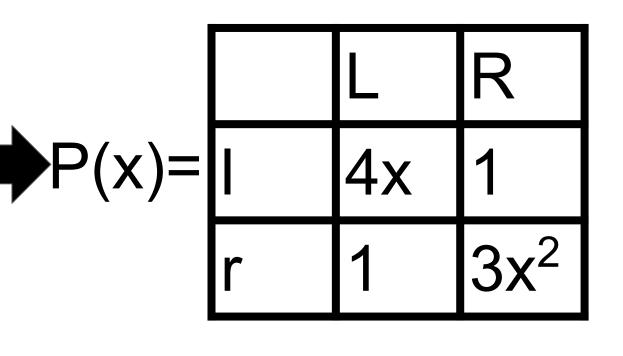
Carnegie Mellon University

Department of Computer Science¹, Institute for Software Research², Carnegie Mellon University {chunkail, zkolter}@cs.cmu.edu, feifang@cmu.edu

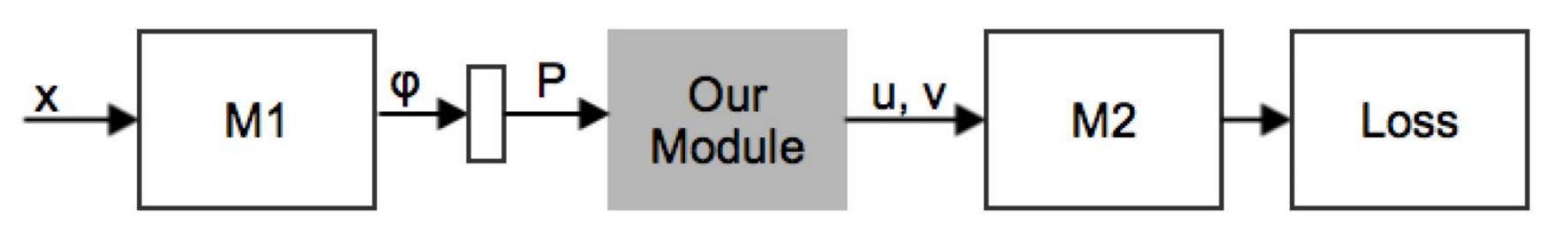
(I) Motivation

- Our goal is to understand underlying utilities of agents in non-cooperative settings based only on observations.
- Game Theory finds optimal strategies based on known payoffs. Our setting, sometimes known as inverse game theory (e.g., Kuleshov, Waugh et al, 2011) is the reverse.
- Given a context x, we predict a matrix P(x), adapting to novel situations. • Prior work either ignores context, or is restricted to special structural properties (e.g., symmetry in Vorobeychik, 2007).





(II) Contributions



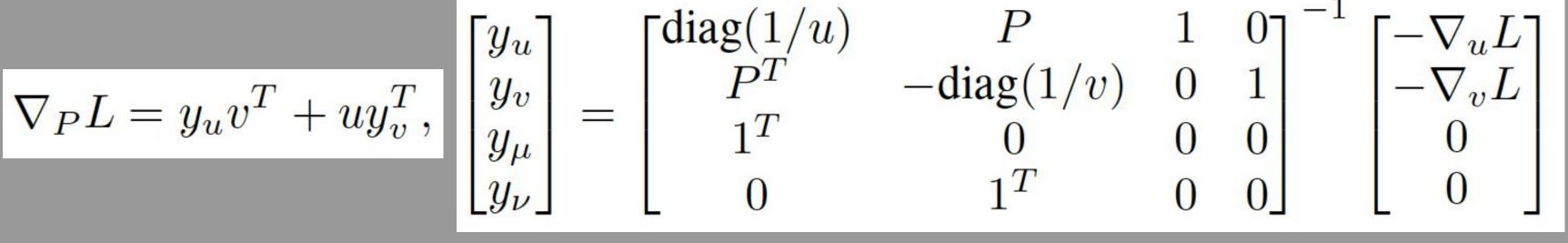
- We propose a fully differentiable model which finds the Logit Quantal Response Equilibrium (QRE).
- Training may be done end-to-end by minimizing log-loss of actions observed by players.
- Our module is sufficiently flexible to learn from actions of just a single player.

(III) Approach

- Assume game to be learnt is zero-sum, normal form.
- Modelling behavior with QRE yields a unique, smooth equilibrium which is equal to regularization by entropy. • Results in a convex-concave problem
- Efficient solution obtained using Newton's method • Backpropagation performed using implicit differentiation (Dontchev & Rockafellar, 2009) Gradient with respect to P is computed implicitly via Jacobian of KKT conditions (Amos & Kolter, 2017)

$$\min_{u \in \mathbb{R}^n} \max_{v \in \mathbb{R}^m} \quad u^T P v - H(v) + H(u)$$

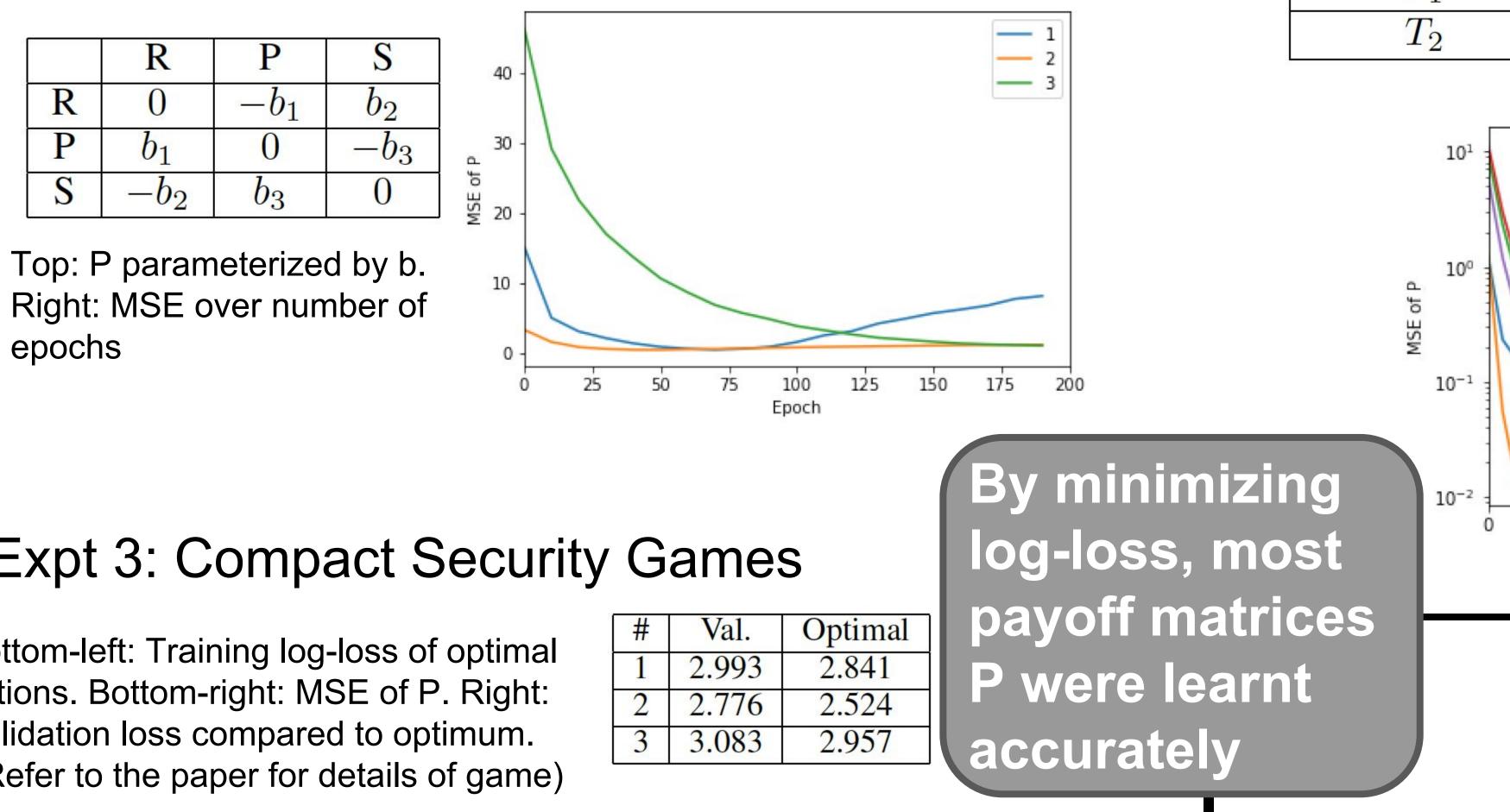
subject to $1^T u = 1, \quad 1^T v = 1,$



 $\operatorname{\mathsf{F}diag}(1/u)$

(IV) Experiments

Expt 1: Modified Rock-Paper-Scissors

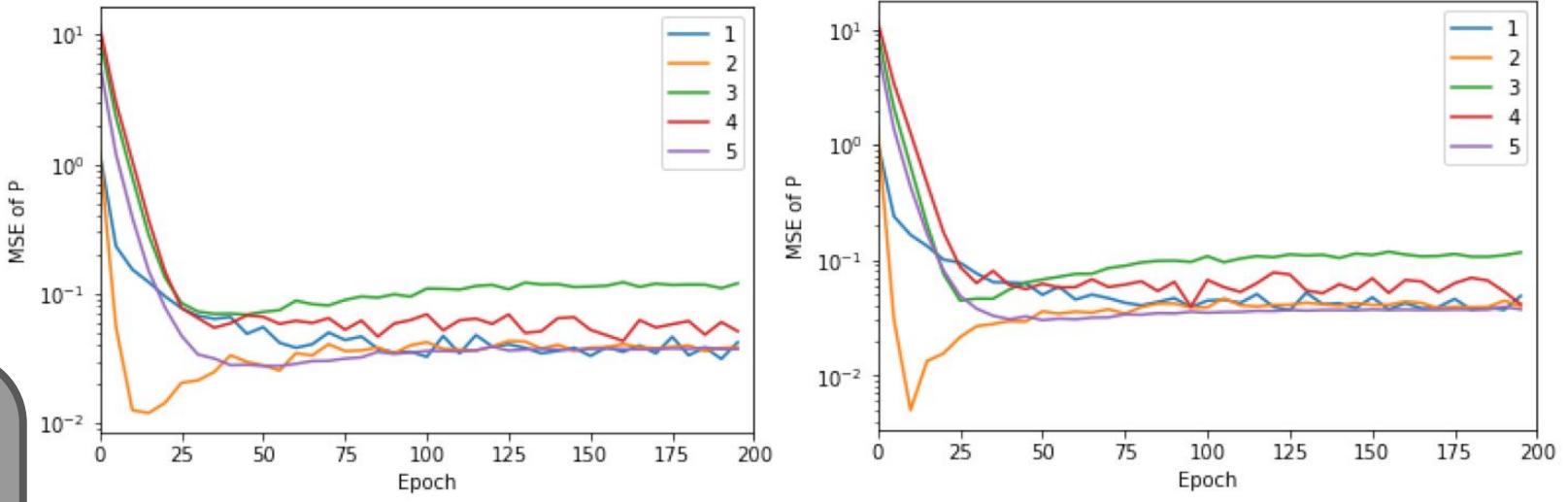


Expt 2: Resource Allocation Game

$\{\#D_1, \#D_2\}$	$\{0, 3\}$	{1, 2}	{2, 3}	$\{3, 0\}$
T_1	$-R_1$	$-\frac{1}{2}R_{1}$	$-\frac{1}{4}R_{1}$	$-\frac{1}{8}R_1$
T_2	$-\frac{1}{8}R_{2}$	$-\frac{1}{4}R_{2}$	$-\frac{1}{2}R_{2}$	$-R_2$

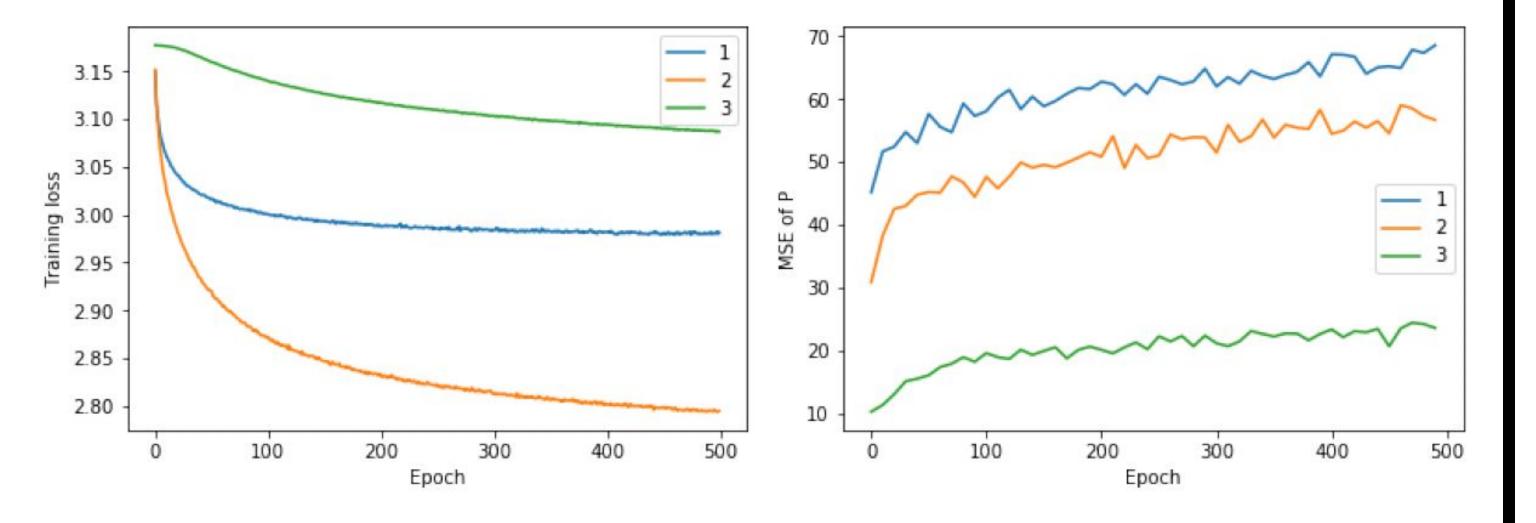
Left: P parameterized by R1, R2. Bottom-left: MSE when both player actions are used for training. Bottom-right: MSE when only the column player's actions are observed

07



Expt 3: Compact Security Games

Bottom-left: Training log-loss of optimal actions. Bottom-right: MSE of P. Right: Validation loss compared to optimum. (Refer to the paper for details of game)



(V) Discussion

• Learnt P(x) accurately from single player's action (Expt 2). • Notable identifiability issues if P is poorly parameterized • Multiple P lead to same strategies (Expt 3) • Predicting strategies well does not imply payoffs are learnt. Sensitivity of optimal actions to perturbations in P Ο • Future work in extensive form and general-sum games Applications: Security Games, Multiagent-RL