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(I) Motivation Actions Context

e Our goal is to understand underlying utilities of agents in non-cooperative
settings based only on observations.

e Game Theory finds optimal strategies based on known payoffs. Our setting,
sometimes known as inverse game theory (e.g., Kuleshov, Waugh et al,
2011) is the reverse.

e Given a context x, we predict a matrix P(x), adapting to novel situations.

e Prior work either ignores context, or Is restricted to special structural
properties (e.g., symmetry in Vorobeychik, 2007).

(Il) Contributions
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e \We propose a fully differentiable model which finds
the Logit Quantal Response Equilibrium (QRE).

e [raining may be done end-to-end by minimizing
log-loss of actions observed by players.

e Our module is sufficiently flexible to learn from
actions of just a single player.

Our
Module

(III) Approach - min max u’ Pv— H(v)+ H(u) 0
e Assume game to be learnt is zero-sum, normal form. WERT pER™
e Modelling behavior with QRE yields a unique, smooth subjectto 1'u=1, 1'v=1,
equilibrium which is equal to regularization by entropy. « v
o Results In a convex-concave problem y - n
o Efficient solution obtained using Newton’s method yu|  [diag(l/u) P L 07 " [Vl
e Backpropagation performed using implicit VpL =y, 07 +uy?l, g’“} — IfT _dlago(l/”) 8 (1) _VO”“L
differentiation (Dontchev & Rockafellar, 2009) _yi 0 17 0 0 0
o Gradient with respect to P is computed implicitly via* 4

Jacobian of KKT conditions (Amos & Kolter, 2017)

Expt 2: Resource Allocation Game

(IV) Experiments
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Expt 3: Compact Security Games

# | Val.

2.993
2.776
3.083

Optimal
2.841
2.524
2957

Bottom-left: Training log-loss of optimal T
actions. Bottom-right: MSE of P. Right: 5
Validation loss compared to optimum. 3
(Refer to the paper for details of game)
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(V) Discussion

e Learnt P(x) accurately from single player's action (Expt 2).

e Notable identifiability issues if P is poorly parameterized
o Multiple P lead to same strategies (Expt 3)
o Predicting strategies well does not imply payoffs are learnt.
o Sensitivity of optimal actions to perturbations in P

e Future work in extensive form and general-sum games

e Applications: Security Games, Multiagent-RL



