
 
 
 

 
 
 

Motivation  
 

• Bayesian Optimization (BO) and some Active Learning (AL) problems 
often assume Gaussian Process (GP) priors.  

• Identifying a common planning framework allows us to tackle both 
problems more effectively by utilizing planning techniques  

• Provide basis for theoretical guarantees and non-myopic decision 
making 

• Identify and solve novel problems with similar rewards and priors 
• Potential applications: robot exploration in spatially correlated fields, 

robotic energy harvesting, hyperparameter tuning  
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❸ 𝜖-GPP 
Key idea: By exploiting L1-continuous reward 
functions, a finite tree search may be used to 
approximate the search over all possible sample 
observations/actions 
Guarantees policy is 𝜖-optimal in specified horizon H. 
An anytime branch and bound extension of 𝜖-GPP is 
proposed to suit real-time applications. 

 
 
 

❹Empirical Results 
Figure 1: Optimal planning on synthetically generated environments. Graphs of 
total rewards and tree size of 𝜖 -GPP policies with (a-b) online planning horizon H’ = 
4 and varying 𝜖 and (c-d) varying H’ = 1, 2, 3, 4 (respectively, 𝜖 = 0.002, 0.06, 0.8, 5) 
vs. no. of time steps with logarithmic rewards. 

The plot of 𝜖∗  = 5 uses our 
anytime variant with a 
maximum tree size of 
50000 nodes while the plot 
of 𝜖 = 250 effectively 
assumes maximum 
likelihood observations 
during planning (Marchant, 
2014). 

 
 
 

Figure 2: BO on real world log potassium concentration field. Graphs of total 
normalized rewards of 𝜖 -GPP policies using UCB-based rewards with (a) H’ = 4, β = 
0, and varying 𝜖, (b) varying H’ = 1, 2, 3, 4 (respectively, 𝜖 = 0.002, 0.003, 0.4, 2) and 
β = 0, and (c) H’ = 4, 𝜖 = 1, and varying β vs. no. of time steps. The plot of 𝜖∗ = 1 
uses our anytime variant with a maximum tree size of 30000 nodes while the plot 
of 𝜖 = 25 effectively assumes maximum likelihood observations. 

Observations: Nonmyopic, 𝜖 –optimal planning improves performance significantly 
over myopic rewards employing EI/PI. Setting a small value of beta improves 
performance slightly as exploration is encouraged. However, 𝜖-GPP is competitive 
and does not require tuning of the parameter β. 
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Immediate reward Future reward Dependency on 
past observations 

Information state Offers Flexibility in Reward fuctions:  
• Weak restriction of 𝑅 to be Lipschitz in 𝑍 
• Encompasses several existing formulations 
• Generalizes to new interesting tasks 
Examples: 
• Maximum Entropy Sampling (Shewry, 1987) 
• UCB selection criterion (Srinivas et al, 2010) 
• Diminishing Rewards: log(𝑍) for 𝑍 > 1, 0 otherwise 

H-stage Bellman Equations 
• Resolves exploration-exploitation tradeoff 
• Removes the need to explicitly encourage 

exploration e.g., acquisition functions  

Comparison to existing methods 

A) Theoretically optimal GPP policy  
Observations(purple to red) are unaccountably 
infinite and is computationally unfeasible.   

C) Maximum likelihood observations  
The most likely observation is assumed for 
planning. No performance guarantees in the 
general case. Acquisition functions may be 
used to further encourage exploration 
(Marchant, 2014). 

D) 𝝐-GPP 
Searches a finite set of observations at  
each stage. This guarantees near-
optimality with provable error bounds. 

⋮ ⋮ 
⋮ 

⋮ ⋮ B) Myopic search with surrogate rewards 
 To avoid search over deeper horizons while 
encouraging exploration, acquisition functions 
may be used for planning e.g., GP-UCB.  


