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@Motivation

* Bayesian Optimization (BO) and some Active Learning (AL) problems
often assume Gaussian Process (GP) priors.

* |dentifying a common planning framework allows us to tackle both
problems more effectively by utilizing planning techniques

* Provide basis for theoretical guarantees and non-myopic decision
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@Gaussian Process Planning (GPP)

Offers Flexibility in Reward fuctions: V7 (dy) £ QT (r(dy) [dy) Information state

* Weak restriction of R to be Lipschitzin Z QT (5¢41.d¢) 2 E[R(Zyy1.8001)+ Vi (((St41,20DZ0 1)) 5041,d4]

* Encompasses several existing formulations Immediate reward Future reward  Dependency on

* Generalizes to new interesting tasks past observations
Fxamples: H-stage Bellman Equations

» Maximum Entropy Sampling (Shewry, 1987) * Resolves exploration-exploitation tradeoff

» UCB selection criterion (Srinivas et al, 2010) * Removes the need to explicitly encourage

» Diminishing Rewards: log(Z) for Z > 1, 0 otherwise exploration e.g., acquisition functions

9 e-GPP @Empirical Results

: . i _ : Figure 1: Optimal planning on synthetically generated environments. Graphs of
Key idea: By explmtmg L1-continuous reward total rewards and tree size of € -GPP policies with (a-b) online planning horizon H' =

functions, a finite tree search may be used to 4 and varying € and (c-d) varying H’ = 1, 2, 3, 4 (respectively, € = 0.002, 0.06, 0.8, 5)
vs. no. of time steps with logarithmic rewards.

approximate the search over all possible sample
observations/actions

Guarantees policy is e-optimal in specified horizon H.
An anytime branch and bound extension of €-GPP is

The plot of €* =5 uses our
anytime variant with a
maximum tree size of
50000 nodes while the plot
of € = 250 effectively
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: Figure 2: BO on real world log potassium concentration field. Graphs of total
C) Maximum likelihood observations normalized rewards of € -GPP policies using UCB-based rewards with (a) H' =4, B =
A) Theoretically optlmal GPP policy The most likely observation is assumed for 0, and varying €, (b) varying H =1, 2, 3, 4 (respectively, € = 0.002, 0.003, 0.4, 2) and
Observations(purple to red) are unaccountably Planning. No performance guarantees in the B=0,and (c)H =4, € =1, and varying B vs. no. of time steps. The plotof €* =1
infinite and is computationally unfeasible. general case. Acquisition functions may be uses our anytime variant with a maximum tree size of 30000 nodes while the plot

SR U9 Iitin sl ChEEIEL G4l IRl of € = 25 effectively assumes maximum likelihood observations.

(Marchant, 2014). v
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B) Myopic search with surrogate rewards - - Observations: Nonmyopic, € —optimal planning improves performance significantly

D) e-GPP
Searches a finite set of observations at
each stage. This guarantees near-
optimality with provable error bounds.

over myopic rewards employing El/PI. Setting a small value of beta improves
performance slightly as exploration is encouraged. However, €-GPP is competitive
and does not require tuning of the parameter .

To avoid search over deeper horizons while
encouraging exploration, acquisition functions
may be used for planning e.g., GP-UCB.
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