
Function Approximation for Solving Stackelberg Equilibrium in Large Perfect
Information Games

Chun Kai Ling, J. Zico Kolter, Fei Fang
School of Computer Science, Carnegie Mellon University

chunkail@cs.cmu.edu, zkolter@cs.cmu.edu, feif@cs.cmu.edu

Abstract

Function approximation (FA) has been a critical component
in solving large zero-sum games. Yet, little attention has
been given towards FA in solving general-sum extensive-
form games, despite them being widely regarded as being
computationally more challenging than their fully competi-
tive or cooperative counterparts. A key challenge is that for
many equilibria in general-sum games, no simple analogue to
the state value function used in Markov Decision Processes
and zero-sum games exists. In this paper, we propose learn-
ing the Enforceable Payoff Frontier (EPF)—a generalization
of the state value function for general-sum games. We ap-
proximate the optimal Stackelberg extensive-form correlated
equilibrium by representing EPFs with neural networks and
training them by using appropriate backup operations and
loss functions. This is the first method that applies FA to the
Stackelberg setting, allowing us to scale to much larger games
while still enjoying performance guarantees based on FA er-
ror. Additionally, our proposed method guarantees incentive
compatibility and is easy to evaluate without having to de-
pend on self-play or approximate best-response oracles.

1 Introduction
A central challenge in modern game solving is to handle
large game trees, particularly those too large to traverse or
even specify. These include board games like Chess, Poker
(Silver et al. 2018, 2016; Brown and Sandholm 2017, 2019;
Moravčı́k et al. 2017; Bakhtin et al. 2021; Gray et al. 2021)
and modern video games with large state and action spaces
(Vinyals et al. 2019). Today, scalable game solving is fre-
quently achieved via function approximation (FA), typically
by using neural networks to model state values and harness-
ing the network’s ability to generalize its evaluation to states
never encountered before (Silver et al. 2016, 2018; Moravčı́k
et al. 2017; Schmid et al. 2021). Methods employing FA
have achieved not only state-of-the-art performance, but also
exhibit more human-like behavior (Kasparov 2018).

Surprisingly, FA is rarely applied to solution concepts
used in general-sum games such as Stackelberg equilib-
rium, which are generally regarded as being more difficult to
solve than the perfectly cooperative/competitive Nash equi-
librium. Indeed, the bulk of existing literature centers around

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on methods such as exact backward induction (Bosanský
et al. 2015; Bošanskỳ et al. 2017), incremental strategy gen-
eration (Černỳ, Bošanskỳ, and Kiekintveld 2018; Cermak
et al. 2016; Karwowski and Mańdziuk 2020), and mathe-
matical programming (Bosansky and Cermak 2015).1 While
exact, these methods rarely scale to large game trees, espe-
cially those too large to traverse, severely limiting our abil-
ity to tackle general-sum games that are of practical inter-
est, such as those in security domains like wildlife poaching
prevention (Fang et al. 2017) and airport patrols (Pita et al.
2008). For non-Nash equilibrium in general-sum games, the
value of a state often cannot be summarized as a scalar (or
fixed sized vector), rendering the direct application of FA-
based zero-sum solvers like (Silver et al. 2018) infeasible.

In this paper, we propose applying FA to model the En-
forceable Payoff Frontier (EPF) for each state and using it to
solve for the Stackelberg extensive-form correlated equilib-
rium (SEFCE) in two-player games of perfect information.
Introduced in (Bošanskỳ et al. 2017; Bosanský et al. 2015;
Letchford and Conitzer 2010), EPFs capture the tradeoff be-
tween player payoffs and is analogous to the state value in
zero-sum games.2 Specifically, we (i) study the pitfalls that
can occur with using FA in general-sum games, (ii) pro-
pose a method for solving SEFCEs by modeling EPFs using
neural networks and minimizing an appropriately designed
Bellman-like loss, and (iii) provide guarantees on incentive
compatibility and performance of our method. Our approach
is the first application of FA in Stackelberg settings with-
out relying on best-response oracles for performance guar-
antees. Experimental results show that our method can (a)
approximate solutions in games too large to explicitly tra-
verse, and (b) generalize learned EPFs over states in a re-
peated setting where game payoffs vary based on features.

2 Preliminaries and Notation
A 2-player perfect information game G is represented by a
finite game tree with game states s ∈ S given by vertices and
action space A(s) given by directed edges starting from s.

1Meta-game solving (Lanctot et al. 2017; Wang et al. 2019) is
used in zero-sum games, but not general-sum Stackelberg games.

2The idea of an EPF was initially used by (Letchford and
Conitzer 2010) to give a polynomial time solution for SSEs. How-
ever, they (as well as other work) do not propose any naming.

Each state belongs to either player P1 or P2; we denote these
disjoint sets by S1 and S2 respectively. Every leaf (terminal
state) ℓ ∈ L ⊆ S of G is associated with payoffs, given by
ri(ℓ) for each player i. Taking action a ∈ A(s) at state s ̸∈ L
leads to s′ = T (a; s), where s′ ∈ S is the next state and T
is the deterministic transition function. Let C(s) = {s′ |
T (a; s) = s′, a ∈ A(s)} denote the immediate children of
s. We say that state s precedes (⊏) state s′ if s ̸= s′ and s
is an ancestor of s′ in G, and write ⊑ if allowing s = s′.
An action a ∈ A(s) leads to s′ if s ⊏ s′ and T (a; s) ⊑ s′.
With a slight abuse of notation, we denote T (a; s) ⊑ s′ by
a ⊏ s′ or (s, a) ⊏ s′. Since G is a tree, for states s, s′ where
s ⊏ s′, exactly one a ∈ A(s) such that (s, a) ⊑ s′. We use
the notation ⊒ and ⊐ when the relationships are reversed.

A strategy πi, where i ∈ {P1,P2}, is a map-
ping from state s ∈ Si to a distribution over ac-
tions A(s), i.e.,

∑
a∈A(s) πi(a; s) = 1. Given

strategies π1 and π2, the probability of reaching
ℓ ∈ L starting from s is given by p(ℓ|s;π1, π2) =∏

i∈{P1,P2}
∏

(s′,a);s⊑s′,(s′,a)⊏ℓ,s′∈Si
πi(a; s

′), and
player i’s expected payoff starting from s is
Ri(s;π1, π2) =

∑
ℓ∈L p(ℓ|s;π1, π2)ri(ℓ). We use as

shorthand p(ℓ;π1, π2) and Ri(π1, π2) if s is the root.
A strategy π2 is a best response to a strategy π1 if
R2(π1, π2) ≥ R2(π1, π

′
2) for all strategies π′

2. The set of
best responses to π1 is written as BRS2(π1).

The grim strategy argminπ1
maxπ2

R2(π1, π2) of P1

towards P2 is one which guarantees the lowest pay-
off for P2. Conversely, the joint altruistic strategy
argmaxπ1,π2

R2(π1, π2) is one which maximizes P2’s pay-
off. We restrict grim and altruistic strategies to those which
are subgame-perfect, i.e., they remain the optimal if the
game was rooted at some other state.3 Grim and altruistic
strategies ignore P1’s own payoffs and can be computed by
backward induction. For each state, we denote by V (s) and
V (s) the internal values of P2 for grim and altruistic strate-
gies obtained via backward induction.

2.1 Stackelberg Equilibrium in Perfect
Information Games

In a Strong Stackelberg equilibrium (SSE), there is a dis-
tinguished leader and follower, which we assume are P1

and P2 respectively. The leader commits to any strategy π1

and the follower best responds to the leader, breaking ties
by selecting π2 ∈ BRS2(π1) such as to benefit the leader.
4 Solving for the SSE entails finding the optimal commit-
ment for the leader, i.e., a pair π = (π1, π2) such that
π2 ∈ BRS2(π1) and R1(π1, π2) is to be maximized.

It is well-known that the optimal SSE will perform no
worse (for the leader) than Nash equilibrium, and often
much better. Consider the game in Figure 1a with k1 = k2 =
0. If the expected follower payoff from staying is less than 0,

3This is to avoid strategies which play arbitrarily at states which
have 0 probability of being reached.

4Commitment rights are justified by repeated interactions. If the
P1 reneges on its commitment, P2 plays another best response,
which is detrimental to the leader. This setting is unlike (De Jonge
and Zhang 2020) which uses binding agreements.

then it would exit immediately. Hence, solutions such as the
subgame perfect Nash gives a leader payoff of 0. The opti-
mal Stackelberg solution is for the leader to commit to a uni-
form strategy—this ensures that staying yields the follower
a payoff of 0, which under the tie-breaking assumptions of
SSE nets the leader a payoff of 4.5.

Stackelberg Extensive-Form Correlated Equilibrium
For this paper, we will focus on a relaxation of the SSE
known as the Stackelberg extensive-form correlated equili-
birum (SEFCE), which allows the leader to explicitly rec-
ommend actions to the follower at the time of decision mak-
ing. If the follower deviates from the recommendation, the
leader is free to retaliate—typically with the grim strategy.
In a SEFCE, P1 takes and recommends actions to maximize
its reward, subject to the constraints that the recommenda-
tions are sufficiently appealing to P2 relative to threat of P2

facing the grim strategy after any potential deviation.
Definition 1 (Minimum required incentives). Given s ∈ S2,
s′ ∈ C(s), we define the minimum required incentive τ(s′) =
maxs!∈C(s);s! ̸=s′ V (s!), i.e., the minimum amount that P1

needs to promise P2 under s′ for it to be reached.

Definition 2 (SEFCE). A strategy pair π = (π1, π2) is a
SEFCE if it is incentive compatible, i.e., for all s ∈ S2, a ∈
A(s), π2(a; s) > 0 =⇒ R2(T (a; s);π1, π2) ≥ τ(T (a; s)).
Additionally, π is optimal if R1(π1, π2) is maximized.

In Section 3, we describe how optimal SEFCE can be
computed in polynomial time for perfect information games.

2.2 Function Approximation of State Values
When finding Nash equilibrium in perfect information
games, the value vs of a state is a crucial quantity which
summarizes the utility obtained from s onward, assuming
optimal play from all players. It contains sufficient informa-
tion for one to obtain an optimal solution after using them
to ‘replace’ subtrees. Typically vs should only rely on states
s′ ⊒ s. In zero-sum games, vs = V s while in coopera-
tive games, vs = V s. Knowing the true value of each state
immediately enables the optimal policy via one-step looka-
head. While vs can be computed over all states by backward
induction, this is not feasible when G is large. A standard
workaround is to replace vs with an approximate ṽs which
is then used in tandem with some search algorithm (depth-
limited search, Monte-Carlo tree search, etc.) to obtain an
approximate solution. Today, ṽs is often learned. By repre-
senting ṽ with a rich function class over state features (typ-
ically using a neural network), modern solvers are able to
generalize ṽ across large state spaces without explicitly vis-
iting every state, thus scaling to much larger games.

Fitted Value Iteration. A class of methods closely related
to ours is Fitted Value Iteration (FVI) (Lagoudakis and Parr
2003; Dietterich and Wang 2001; Munos and Szepesvári
2008). The idea behind FVI is to optimize for parameters
such as to minimize the Bellman loss over sampled states
by treating it as a regular regression problem. 5 Here, the

5We distinguish RL and FVI in that the transition function is
known explicitly and made used of in FVI.

s

s′

(10,−1) (−1, 1)

stay

(k1, k2)

exit

(a) Toy example.

1 0 14
0
4
8

Unenforceable
Enforceable

(b) EPF at vertex s′.

1 0 14
0
4
8 Degenerate EPF

(c) EPF at vertex after exiting.
1 0 14

0
4
8 EPF in envelope

Not in envelope

(d) EPF at root vertex s.

Figure 1: (a) Game tree to illustrate computation of SEFCE. Leader , follower and leaf □ states are vertices and edges are
actions. (b-d) EPFs at s′, after exiting and s. The x and y axes are follower (µ2) and leader payoffs (Us(µ)). In (b) the pink
regions give P2 too little and are truncated. In (d), the pink regions are not part of the upper concave envelope and removed.

Bellman loss measures the distance between ṽs and the es-
timated value using one-step lookahead using ṽ. If this dis-
tance is 0 for all s, then ṽ matches the optimal v. In practice,
small errors in FA accumulate and cascade across states,
lowering performance. Thus, it is important to bound per-
formance as a function of the Bellman loss over all s.

2.3 Related Work
Some work has been done in generalizing state values in
general-sum games, but few involve learning them. Related
to ours is (Murray and Gordon 2007; MacDermed et al.
2011; Dermed and Charles 2013), which approximate the
achievable set of payoffs for correlated equilibrium, and
eventually SSE (Letchford et al. 2012) in stochastic games.
These methods are analytical in nature and scale poorly.
(Pérolat et al. 2017; Greenwald et al. 2003) propose a Q-
learning-like algorithm over general-sum Markov games,
but do not apply FA and only consider stationary strategies
which preclude strategies involving long range threats like
the SSE. (Zinkevich, Greenwald, and Littman 2005) show
a class of general-sum Markov games where value-iteration
like methods will necessarily fail. (Zhong et al. 2021) study
reinforcement learning in the Stackelberg setting, but only
consider followers with myopic best responses. (Castelletti,
Pianosi, and Restelli 2011) apply FVI in a multiobjective
setting, but do not consider the issue of incentive compati-
bility. Another approach is to apply reinforcement learning
and self-play (Leibo et al. 2017). Recent methods account
for the nonstationary environment each player faces during
training (Foerster et al. 2017; Perolat et al. 2022); however
they have little game theoretical guarantees in terms of in-
centive compatibility, particularly in non zero-sum games.

3 Review: Solving SEFCE via Enforceable
Payoff Frontiers

In Section 2, we emphasized the importance of the value
function v in solving zero-sum games. In this section, we
review the analogue for SEFCE in the general-sum games,
which we term as Enforceable Payoff Frontiers (EPF). Intro-
duced in (Letchford and Conitzer 2010), the EPF at state s is
a function Us : R 7→ R∪ {−∞}, such that Us(µ2) gives the
maximum leader payoff for a SEFCE for a game rooted at s,
on condition that P2 obtains a payoff of µ2. All leaves s ∈ L

have degenerate EPFs Us(r2(s)) = r1(s) and −∞ every-
where else. EPFs capture the tradeoff in payoffs between P1

and P2, making them useful for solving SEFCEs. We now
review the two-phase algorithm of (Bošanskỳ et al. 2017)
using the example game in Figure 1a with k1 = k2 = 0.
This approach forms the basis for our proposed FA method.

Phase 1: Computing EPF by Backward Induction. The
EPF at s′ is given by the line segment connecting payoffs of
its children EPF and −∞ everywhere else. This is because
the leader is able to freely mix over actions. To compute Us,
we consider in turn the EPFs after staying or exiting. Case
1: P1 is recommending P2 to stay. For incentive compati-
bility, it needs to promise P2 a payoff of at least 0 under
T (stay; s) = s′. Thus, we left-truncate the regions of the
EPF at s′ which violate this promise, leaving behind the blue
segment (Figure 1b), which represents the payoffs at s′ that
are enforceable by P1. Case 2: P1 is recommending P2 to
exit. To discourage P2 from staying, it commits to the grim
strategy at s′ if P2 chooses to stay instead, yielding P2 a
payoff of −1 ≤ k2 = 0. Hence, no truncation is needed and
the set of enforceable payoffs is the (degenerate) blue line
segment (Figure 1c). Finally, to recover Us, observe that we
can achieve payoffs on any line segment connecting point
across the EPFs of s’s children. This union of points on such
lines (ignoring those leader-dominated) is given by the up-
per concave envelope of the blue segments in Figure 1b and
1c; this removes {(0, 0)}, giving the EPF in Figure 1d.

More generally, let g1 and g2 be functions such that
gj : R 7→ R ∪ {−∞}. We denote by g1

∧
g2 their up-

per concave envelope, i.e., inf{h(µ) | h is concave and h ≥
max{g1, g2} over R}. Since

∧
is associative and commuta-

tive, we use as shorthand
∧

{·} when applying
∧

repeatedly
over a finite set of functions. In addition, we denote g ▷ t
as the left-truncation of the g with threshold t ∈ R, i.e.,
[g ▷ t](µ) = g(µ) if µ ≥ t and −∞ otherwise. Note that
both

∧
and ▷ are closed over concave functions. For any

s ∈ S , its EPF Us can be concisely written in terms of its
children EPF Us′ (where s′ ∈ C(s)) using

∧
, ▷ and τ(s′).

Us(µ) =

[∧

s′∈C(s) Us′

]
(µ) if s ∈ S1[∧

s′∈C(s) Us′ ▷ τ(s
′)
]
(µ) if s ∈ S2

, (1)

which we apply in a bottom-up fashion to complete Phase 1.

Phase 2: Extracting Strategies from EPF. Once Us has
been computed for all s ∈ S, we can recover the optimal
strategy π1 by applying one-step lookahead starting from
the root. First, we extract (OPT2,OPT1), the coordinates of
the maximum point in Uroot, which contain payoffs under the
optimal π. Here, this is (0, 4.5). We initialize µ2 = OPT2,
which represents P1’s promised payoff to P2 at the current
state s. Next, we traverse G depth-first. By construction,
Us(µ2) > −∞ and the point (µ2, Us(µ2)) is the convex
combination of either 1 or 2 points belonging to its chil-
dren EPFs. The mixing factors correspond to the optimal
strategy π(a; s). If there are 2 distinct children s′, s′′ with
mixing factor α′, α′′, we repeat this process for s′, s′′ with
µ′
2 = µ2/α

′, µ′′
2 = µ2/α

′′, otherwise we repeat the process
for s′ and µ′

2 = µ2. For our example, we start at s, µ2 = 0,
which was obtained by P2 playing ‘stay’ exclusively, so we
keep µ2 and move to s′. At s′, µ = 0 by mixing uniformly,
which gives us the result in Section 2.

Theorem 1 ((Bošanskỳ et al. 2017; Bosanský et al. 2015)).
(i) Us is piecewise linear concave with number of knots6

no greater than the number of leaves beneath s. (ii) Using
backward induction, SEFCEs can be computed in polyno-
mial time (in |S|) even in games with chance. EPFs continue
to be piecewise linear concave.

Markovian Property. Just like state values vs in zero-sum
games, we can replace any internal vertex s in G with its EPF
while not affecting the optimal strategy in all other branches
of the game. This can done by adding a single leader vertex
with actions leading to terminal states with payoffs corre-
sponding to the knots of Us. Since Us is obtained via back-
ward induction, it only depends on states beneath s. In fact,
if two games G and G′ (which could be equal to G) shared a
common subgame rooted in s and s′ respectively, we could
reuse the Us found in G for Us′ in G′. This observation un-
derpins the inspiration for our work—if s and s′ are similar
in some features, then Us and Us′ are likely similar and it
should be possible to learn and generalize EPFs over states.

4 Challenges in Applying FA to EPF
We now return to our original problem of applying FA to
find SEFCE. Our idea, outlined in Algorithm 1 and 2 is a
straightforward extension of FVI. Suppose each state has
features f(s)—in the simplest case this could be a state’s
history. We design a neural network Eϕ(f) parameterized
by ϕ. This network maps state features f(s) to some repre-
sentation of Ũs, the approximated EPFs. To achieve a good
approximation, we optimize ϕ by minimizing an appropriate
Bellman-like loss (over EPFs) based on Equation (1) while
using our approximation Ũs in lieu of Us. Despite its sim-
plicity, there remain several design considerations.

EPFs are the ‘right’ object to learn. Unlike state values,
representing an exact EPF at a state s could require more
than constant memory since the number of knots could be
linear in the number of leaves underneath it (Theorem 1).
Can we get away with summarizing a state with a scalar or a

6Knots are where the slope of the EPF changes.

Algorithm 1: Training Pipeline

1: Sample trajectory s
(1)
new, . . . , s

(t)
new

2: Update replay buffer B with s(1), . . . , s(t)

3: for i ∈ {1, . . . , t} do
4: Sample batch S = {s(1), . . . s(n)} ⊆ B
5: ℓ← COMPUTELOSS(S;Eϕ)
6: Update ϕ using ∂ℓ/∂ϕ

Algorithm 2: COMPUTELOSS(S;Eϕ)

1: for i ∈ {1 . . . n} do
2: Ũs(i) ← Eϕ(f(s

(i)))

3: Ũ
s
(j)
next
← Eϕ(f(s

(j)
next)) for all s(j)next ∈ C(s(i))

4: Compute Ũ target
s(i)

using Equation (1) and {Ũ
s
(j)
next
}

5: return
∑

i L(Ũs(i) , Ũ
target
s(i)

)

small vector? Unfortunately, any ‘lossless summary’ which
enjoys the Markovian property necessarily encapsulates the
EPF. To see why, consider the class of games Gk in Fig-
ure 1a with k1 = −2 and k = k2 ∈ [−1, 1]. The optimal
leader payoff for any Gk is 9−11k

2 , which is precisely Us′(k)
(Figure 1b). Now consider any lossless summary for s′ and
use it to solve every Gk. The resultant optimal leader payoffs
can recover Us′(µ2) between µ2 ∈ [−1, 1]. This implies that
no lossless summary more compact than the EPF exists.

Unfulfillable Promises Arising from FA Error. Consider
the game in Figure 2a with k1 = −10, k2 = −1. The exact
Us′ is the line segment combining the points (−1, 10) and
(1−ϵ,−1), shown in green in Figure 3a. However, let us sup-
pose that due to function approximation we instead learned
the blue line segment containing (−1, 10) and (1,−1). Per-
forming Phase 2 using Ũ , the policy extracted at s′ is once
again the uniform policy and requires us to promise the fol-
lower a utility of 1 in s′′. However, achieving a payoff of 1
is impossible regardless of how much the leader is willing
to sacrifice, since the maximum outcome under s′′ is 1 − ϵ.
Since this is an unfulfillable promise, the follower’s best re-
sponds by exiting in s, which gives the leader a payoff of
−10. In general, unfulfillable promises due to small FA error
can lead to arbitrarily low payoffs. In fact, one could argue
that Ũ does not even define a valid policy.

Costly Promises. Consider the case where k1 =
−30, k2 = 1 while keeping Ũs′ the same. Here, the promise
of 1 at s′′ is fulfillable, but involves incurring a cost of
−30, which is even lower than having follower staying (Fig-
ure 3b). In general, this problem of costly promises stems
from the EPF being wrongly estimated, even for a small
range of µ2. We can see how costly promises arise even
from small ϵ is. The underlying issue is that in general,
Us can have large Lipschitz constants (e.g., proportionate to
(maxs r1(s)−mins r1(s)) /(min |r2(s)−r2(s)|)). The ex-
istence of costly payoffs rules out EPF representations based

s
s′

(10,−1)
s′′

(k1, k2) (−1, 1− ϵ)

(−10, 0)

(a) Game tree to illustrate unful-
fillable and costly promises.

s

s′

(0, 0) (−1,−1)

refuse

(q1,−q2)

accede

(b) Stage game used in the
TANTRUM game.

Figure 2: Games used in Sections 4 and 6. Leader , fol-
lower and leaf □ states are vertices and edges are actions.

(a) Unfulfillable promise. (b) Costly promise. .

Figure 3: EPFs for (a) unfulfillable promises and (b) costly
promises. Blue lines are estimated EPFs Ũs′ , solid and dot-
ted green lines are true EPFs Us′ , Us′′ . In both cases, FA
error leads us to believe that the payoff given by the blue
square at (0, 4.5) can be achieved by mixing the endpoints
of Ũs′ with probability α′ = α′′ = 0.5 (black curves).

on discretizing the space of µ2, since small errors incurred
by discretization could lead to huge drops in performance.

5 FA of EPF with Performance Guarantees
We now design our method using the insights from Sec-
tion 4. We learn EPFs without relying on discretization over
P2 payoffs µ2. Unfulfillable promises are avoided entirely
by ensuring that the set of µ2 where Ũs(µ2) > −∞ lies
within some known set of achievable P2 payoffs, while
costly promises are mitigated by suitable loss functions.

Representing EPFs using Neural Networks. Our pro-
posed network architecture represents EPFs by a small set of
m ≥ 2 points Pϕ(s) = {(xj , yj)}, for j ∈ [m]. Here, m is a
hyperparameter trading off complexity of the neural network
Eϕ with its representation power. The approximated EPF Ũs

is the linear interpolation of these m points; and Ũs = −∞
if µ2 > maxj xj or µ2 < minj xj . For now, we make the as-
sumption that follower payoffs under the altruistic and grim
strategy (V (s) and V (s)) are known exactly for all states.
Through the architecture of Eϕ that for all j ∈ [m], we have
V (s) ≤ xj ≤ V (s). As we will see, this helps avoid unful-
fillable promises and allows for convenient loss functions.

Concretely, our network Eϕ(f(s);V (s), V (s)) takes in as
inputs state features f(s), lower and upper bounds V (s) ≤
V (s) and outputs a matrix in Rm×2 representing {(xj , yj)}
where x1 = V (s) and xm = V (s). For simplicity, we use a
multilayer feedforward network with depth d, width w and

ReLU activations for each layer. Serious applications should
utilize domain specific architectures. Denoting the output of
the last fully connected layer by h(d)(f(s)) ∈ Rw, for j ∈
{2 . . .m− 1} and k ∈ [m] we set

xj = σ
(
zTx,jh

(d)(f(s)) + bx,j

)
·
(
V (s)− V (s)

)
+ V (s),

yk = zTy,kh
(d)(f(s)) + by,k,

and x1 = V (s) and xm = V (s), where σ(x) = 1/(1 +
exp(−x)). Here, zx,j , zy,k ∈ Rw and bx,j , by,k ∈ R are
weights and biases, which alongside the parameters from
feedforward network form the network parameters ϕ to be
optimized. Since Ũs is represented by its knots (given by
Pϕ(s)),

∧
and consequently, (1) may be performed explic-

itly and efficiently, returning an entire EPF represented by
its knots (as opposed to the EPF evaluated at a single point).
This is crucial, since the computation is performed every
state every iteration (Line 4 of Algorithm 2).

Loss Functions for Learning EPFs. Given 2 EPFs Ũs, Ũ
′
s

we minimize the following loss to mitigate costly promises,

L∞(Ũs, Ũ
′
s) = max

µ2

|Ũs(µ2)− Ũ ′
s(µ2)|.

L∞ was chosen specifically to incur a large loss if the ap-
proximation is wildly inaccurate in a small range of µ2 (e.g.,
Figure 3b). Achieving a small loss requires that Ũs(µ2)

approximates Ũ ′
s(µ2)) well for all µ2. This design deci-

sion is particularly important. For example, contrast L∞
with another intuitive loss L2(Ũs, Ũ

′
s) =

∫
µ2
(Ũs(µ2) −

Ũ ′
s(µ2))

2dµ2. Observe that L2 is exceedingly small in the
example of Figure 3b — in fact, when ϵ is small enough
leads to almost no loss, even though the policy as discussed
in Section 4 is highly suboptimal. This phenomena leads to
costly promises, which was indeed observed in our tests.

Our Guarantees. Any learned Ũ implicitly defines a pol-
icy π̃ by one-step lookahead using Equation (1) and the
method described in Phase 2 (Section 3). Extracting π̃ need
not be done offline for all s ∈ S; in fact, when G is too
large it is necessary that we only extract π̃(·; s) on-demand.
Nonetheless, π̃ enjoys some important properties.

Theorem 2 (Incentive Compatibility). For any policy π̃ ob-
tained using our method, any s ∈ S2 and a ∈ A(s), we have
π̃s(a; s) > 0 =⇒ R2(T (a; s); π̃) ≥ τ(T (a; s)).

Theorem 3 (FA Error). If L∞(Ũs, Ũ
target
s) ≤ ϵ for all s ∈ S,

then |R1(π̃)−R1(π
∗)| = O(Dϵ) where D is the depth of G

and π∗ is the optimal strategy.

Here, T (a; s) is transition function (Section 2). Recall
from Section 2 that for π to be an optimal SEFCE, we re-
quire (i) incentive compatibility and (ii) R1(π) to be max-
imized. Theorems 2 and 3 illustrate how our approach dis-
entangles these criteria. Theorem 2 guarantees that P2 will
always be incentivized to follow P1’s recommendations, i.e.,
there will be no unexpected outcomes arising from unfulfil-
lable promises. Crucially, this is a hard constraint which is
satisfied solely due to our choice of network architecture,

which ensures that Ũs(µ2) = −∞ when µ2 > V s for any
π̃ obtained from Ũ . Conversely, Theorem 3 shows that the
goal of maximizing R1 subject to incentive compatibility is
achieved by attaining a small FA error across all states. This
distinction is important. Most notably, incentive compatibil-
ity is no longer dependent on convergence during training.
This explicit guarantee stands in contrast with methods em-
ploying self-play reinforcement learning agents; there, in-
centive compatibility follows implicitly from the apparent
convergence of a player’s strategy. This guarantee has practi-
cal implications, for example, evaluating the quality of π̃ can
be done by estimating R1(π̃) based on sampled trajectories,
while implicit guarantees requires incentive compatibility to
be demonstrated using some approximate best-response or-
acle and usually involves expensive training of a RL agent.

The primary limitation of our method is when V and V
(and hence τ) are not known exactly. As it turns out, we
can instead use upper and lower approximations while still
retaining incentive compatibility. Let π̃grim

1 be an approx-
imate grim strategy. Define V˜ (s) to be the expected fol-
lower payoffs at s when faced best-responding to π̃grim

1 , i.e.,
R2(s; π̃

grim
1 , π2), where π2 ∈ BRS2(π̃

grim
1). Following Def-

inition 1, the approximate minimum required incentive is
τ̃(s′) = maxs!∈C(s);s! ̸=s′ V˜ (s!) for all s ∈ S2, s′ ∈ C(s).
Similarly, let π̃alt be an approximate joint altruistic strategy
and its resultant internal payoffs in each state be Ṽ (s).

Under the mild assumption that π̃alt always benefits P2

more than the π̃grim
1 , i.e., Ṽ (s) ≥ V˜ (s) for all s, we can re-

place the τ, V and V with τ̃, V˜ and Ṽ and maintain incentive
compatibility (Theorem 2). The intuition is straightforward:
if P2’s threats are ‘good enough’, parts of the EPF will still
be enforceable. Furthermore, promises will always be fulfil-
lable since EPFs domains are now limited to be no greater
than Ṽ (s), which we know can be achieved by definition.
Unfortunately, Theorem 3 no longer holds, not even in terms
of maxs |τ̃(s) − τ(s)|. This is again due to the large Lips-
chitz constants of Us. However, we have the weaker guar-
antee (whose proof follows that of Theorem 3) that perfor-
mance is close to that predicted at the root.
Theorem 4 (FA Error with Weaker Bounds).
If L∞(Ũs, Ũ

target
s) ≤ ϵ for all s ∈ S, then

|R1(π̃) − ÕPT2| = O(Dϵ) where D is the depth of
G and ÕPT2 = maxµ2

Ũroot(µ2).

Remark. The key technical difficulty here is finding Ṽ . In
our experiments, π̃grim

1 can be found analytically. In general
large games, we can approximate π̃grim

1 , Ṽ by searching over
S2, but use heuristics when expanding nodes in S1.

Implementation Details. (i) We use several techniques
typically used to stabilize training such as target networks
(Arulkumaran et al. 2017; Mnih et al. 2015) and prioritized
experience replay (Schaul et al. 2015). (ii) In practice, in-
stead of L∞, we found it easier to train a loss based on the
sum of the squared distances at the x-coordinate of the knots
in Ũs and Ũ ′

s, i.e., L =
∑

µ2∈{knots}[Ũs(µ2) − Ũ ′
s(µ2)]

2.
Since L upper bounds L2

∞, using it also avoids costly

promises and allows us to enjoys a similar FA guarantee. (iii)
If G has a branching factor of β, then (1) in Algorithm 2 can
be executed inO(βm) time. In practice, we use a brute force
method better suited for batch GPU operations which runs in
O((βm)3). (iv) We train using only the decreasing portions
of Ũs. This does not lead to any loss in performance since
payoffs in the increasing portion of an Ũs are Pareto domi-
nated. We do not want to ‘waste’ knots on learning the mean-
ingless increasing portion. (v) Training trajectories were ob-
tained by taking actions uniformly at random. Specifics for
all implementation details are in the Appendix.

6 Experiments
We focused on the following two synthetic games. Game
details and experiment environments are in the Appendix.
Code is at https://github.com/lingchunkai/learn-epf-sefce.

Tantrum. TANTRUM is the game in Figure 2b repeated
n times, with q1 > 0, q2 ≥ 1, and rewards accumulated
over stages. The only way P1 can get positive payoffs is
by threatening to throw a trantrum with the mutually de-
structive (−1,−1) outcome. Since q2 > 1, P2 has to use
threats spanning over stages to sufficiently entice P2 to ac-
cede. Even though TRANTRUM has O(3n) leaves, it is clear
that the grim (resp. altruistic) strategy is to throw (resp. not
throw) a tantrum at every step. Hence V and V are known
even when n is large, making TANTRUM a good testbed. The
raw features f(s) is a 5-dimensional vector, the first 3 are the
occurrences count of outcomes for previous stages, and the
last 2 being a one-hot vector indicating the current state.

Resource Collection. RC is played on a J × J grid with
a time horizon n. Each cell contains varying quantities of 2
different resources r1(x, y), r2(x, y) ≥ 0, both of which are
collected (at most once) by either players entering. Players
begin in the center and alternately choose to either move to
an adjacent cell or stay put. Each Pi is only interested in re-
source i, and players agree to pool together resources when
the game ends. RC gives P1 the opportunity to threaten
P2 with going ‘on strike’ if P2 does not move to the cells
that P1 recommends. RC has approximatelyO(25n) leaves.
The grim strategy is for P1 to stay put. However, unlike
TANTRUM, computing V and V still requires search (at least
for P2) at each state, which is still computationally expen-
sive. We use as features (a) one-hot vector showing past vis-
ited locations, (b) the current coordinates of each player and
whose turn it is (c) the amount of each resource collected,
and (d) the number of rounds remaining.

6.1 Experimental Setup
Games with Fixed Parameters. We run 3 sub-
experiments. [RC] We experimented with RC with
J = 7, n = 4 over 10 different games. Rewards ri were
generated using a log-Gaussian process over (x, y) to
simulate spatial correlations (details in Appendix). We also
report the payoffs from a ‘non-strategic’ P1 which optimizes
only for resources it collects, while letting P2 best respond.
[TANTRUM] We ran TANTRUM with n = 25, q1 = 1 and
q2 chosen randomly. These games have > 1e12 states;

∆OPT ∆SP ∆non

RC 10 -.0247 .200 .265
TANTRUM 5 -.0262 8.89 N/A

RC+ 3 N/A N/A .421

(a) Results for fixed parameter games

5.5 6.5 7.5 8.5 9.5 10.5
6.4

7.4

8.4

9.4

Exact
Predicted
Lookahead

(b) EPF after 100k epochs

5.5 6.5 7.5 8.5 9.5 10.5
6.4

7.4

8.4

9.4

Exact
Predicted
Lookahead

(c) EPF after 2M epochs

-26.5 -26 -25.5
0

1

Target
Lookahead

(d) Failure case

Figure 4: (a) Results for games with fixed parameters averaged over # specifies # trials. ∆OPT, ∆SP, and ∆non is the average
difference between our method and the optimal SEFCE, subgame perfect Nash, and non-strategic leader commitment. (b)-(c)
Learned EPFs at the root for RC. (d) A failure case in TANTRUM, even though learned policies are still near-optimal.

however, we can still obtain the optimal strategy due to the
special structure of the game (note the subgame perfect
equilibrium gives P1 zero payoff). [RC+] We ran RC with
J = 9, n = 6. Since G is large, we use approximates (τ̃ , Ṽ ,
V˜) obtained from π̃grim

1 and π̃alt. π̃grim
1 is for P2 to stay put,

while V˜ is obtained by applying search online (i.e., when s
appears in training) for P2 starting from s. Thus τ̃(s) can
also be computed online from V˜ . π̃alt is obtained by running
exact search to a depth of 4 (counted from the root) and then
switching to a greedy algorithm. On the rare occasion that
Ṽ (s) < V˜ (s), we set Ṽ (s) ← V˜ (s). We report results in
Figure 4a, which show the difference between P1’s payoff
for our method and (i) the optimal SEFCE, (ii) the subgame
perfect Nash, and (iii) the non-strategic leader commitment.

Featurized TANTRUM. We allow q1, q2 to vary between
stages of G, giving vectors qi ∈ [1,∞]n. Each trajec-
tory uses different qi, which we append as features to our
network, alongside the payoffs already collected for each
player. For training, we draw i.i.d. samples of qj

i ∼ exp(1)+
1. The evaluation metric is κ = R1(π̃)/OPT, i.e., the ra-
tio of P1’s payoffs under π̃ compared to the optimal π.
For each n, we test on 100 q-vectors not seen during train-
ing and compare their κ against a ‘greedy’ strategy which
recommends P2 to accede as long as there are sufficient
threats in the remainder of the game for P1 (details in Ap-
pendix). We also stress test π̃ on a different test distribution
q̂j
i ∼ exp(1) + 4. We report results in Figure 5a and 5b.

6.2 Results and Discussion
For fixed parameter games whose optimal value can be com-
puted, we observe near optimal performance which signifi-
cantly outperforms other baselines. For [RC], the average
value of each an improvement of .5 is approximately equal
to moving an extra half move. In [TANTRUM], the sub-
game perfect equilibrium is vacuous as P1 is unable to issue
threats and gets a payoff of 0. In [RC+], we are unable to
fully expand the game tree, however, we still significantly
outperform the non-strategic baseline.

For featurized TANTRUM, we perform near-optimally for
small n, even when stress tested with out-of-distribution q’s
(Figure 5a). Performance drops as n becomes larger, which
is natural as EPFs become more complex. While perfor-
mance degrades as n increases, we still significantly outper-

n κ grd-κ str-κ
5 .993 .828 .997
6 .982 .773 .982
7 .968 .778 .921

10 .938 .775 .898

(a)
(b)

Figure 5: Results for Featurized TRANTRUM as depth n
varies, based on κ, the ratio of the leader’s payoff to the
true optimum. (a) grd-κ and str-κ denote results for the base-
line greedy method and our results when stress tested with
q drawn from a distribution from training. (b) Proportion of
trials which give κ < κthresh.

form the greedy baseline. The stress test suggests that the
network is not merely memorizing data.

Figures 4b and 4c shows the learned EPFs at the root
for epochs 100k and 2M, obtained directly or from one-
step lookahead. As explained in Section 5, we only learn the
decreasing portions of EPFs. After 2M training epochs, the
predicted EPFs and one-step lookahead mirrors the true EPF
in the decreasing portions, which is not the case at the begin-
ning. At the beginning of training, many knots (red markers)
are wasted on learning the ‘useless’ increasing portions on
the left. After 2M epochs, knots (blue markers) were learn-
ing the EPF at the ‘useful’ decreasing regions.

Figure 4d gives an state in TANTRUM whose EPF yields
high loss even after training. This failure case is not rare
since TANTRUM is large. Yet, the resultant action is still
optimal—in this case the promise to P2 was µ2 = −25.5
which is precisely V (s). Like MDPs, policies can be near-
optimal even with high Bellman losses in some states.

7 Conclusion
We proposed a novel method of performing FA on EPFs that
allows us to efficiently solve for SEFCE. This is to the best
of our knowledge, the first time a such an object has been
learned from state features, leading to a FA-based method
of solving Stackelberg games with performance guarantees.
We hope that our approach will help to close the current gap
between solving zero-sum and general-sum games.

Acknowledgements
This work was supported by NSF grant IIS-2046640 (CA-
REER).

References
Arulkumaran, K.; Deisenroth, M. P.; Brundage, M.; and
Bharath, A. A. 2017. Deep reinforcement learning: A brief
survey. IEEE Signal Processing Magazine, 34(6): 26–38.
Bakhtin, A.; Wu, D.; Lerer, A.; and Brown, N. 2021. No-
Press Diplomacy from Scratch. Advances in Neural Infor-
mation Processing Systems, 34.
Bošanskỳ, B.; Brânzei, S.; Hansen, K. A.; Lund, T. B.; and
Miltersen, P. B. 2017. Computation of Stackelberg equilibria
of finite sequential games. ACM Transactions on Economics
and Computation (TEAC), 5(4): 1–24.
Bosanský, B.; Brânzei, S.; Hansen, K. A.; Miltersen, P. B.;
and Sørensen, T. B. 2015. Computation of Stackelberg Equi-
libria of Finite Sequential Games. CoRR, abs/1507.07677.
Bosansky, B.; and Cermak, J. 2015. Sequence-form algo-
rithm for computing stackelberg equilibria in extensive-form
games. In Twenty-Ninth AAAI Conference on Artificial In-
telligence.
Brown, N.; and Sandholm, T. 2017. Libratus: the superhu-
man AI for no-limit poker. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelli-
gence.
Brown, N.; and Sandholm, T. 2019. Superhuman AI for mul-
tiplayer poker. Science, 365(6456): 885–890.
Castelletti, A.; Pianosi, F.; and Restelli, M. 2011. Multi-
objective Fitted Q-Iteration: Pareto frontier approximation
in one single run. In 2011 International Conference on Net-
working, Sensing and Control, 260–265. IEEE.
Cermak, J.; Bosansky, B.; Durkota, K.; Lisy, V.; and Kiek-
intveld, C. 2016. Using correlated strategies for computing
stackelberg equilibria in extensive-form games. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 30.
Cermák, J.; Bošanský, B.; Durkota, K.; Lisý, V.; and Kiek-
intveld, C. 2016. Using Correlated Strategies for Computing
Stackelberg Equilibria in Extensive-form Games. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial In-
telligence, AAAI’16, 439–445. AAAI Press.
Černỳ, J.; Bošanskỳ, B.; and Kiekintveld, C. 2018. In-
cremental Strategy Generation for Stackelberg Equilibria
in Extensive-Form Games. In Proceedings of the 2018
ACM Conference on Economics and Computation, 151–168.
ACM.
De Jonge, D.; and Zhang, D. 2020. Strategic negotiations for
extensive-form games. Autonomous Agents and Multi-Agent
Systems, 34(1): 1–41.
Dermed, M.; and Charles, L. 2013. Value methods for effi-
ciently solving stochastic games of complete and incomplete
information. Ph.D. thesis, Georgia Institute of Technology.
Dietterich, T.; and Wang, X. 2001. Batch value function
approximation via support vectors. Advances in neural in-
formation processing systems, 14.

Fang, F.; Nguyen, T. H.; Pickles, R.; Lam, W. Y.; Clements,
G. R.; An, B.; Singh, A.; Schwedock, B. C.; Tambe, M.;
and Lemieux, A. 2017. PAWS-A Deployed Game-Theoretic
Application to Combat Poaching. AI Magazine, 38(1): 23.
Foerster, J. N.; Chen, R. Y.; Al-Shedivat, M.; Whiteson, S.;
Abbeel, P.; and Mordatch, I. 2017. Learning with opponent-
learning awareness. arXiv preprint arXiv:1709.04326.
Gray, J.; Lerer, A.; Bakhtin, A.; and Brown, N. 2021.
Human-Level Performance in No-Press Diplomacy via
Equilibrium Search. In International Conference on Learn-
ing Representations.
Greenwald, A.; Hall, K.; Serrano, R.; et al. 2003. Correlated
Q-learning. In ICML, volume 3, 242–249.
Karwowski, J.; and Mańdziuk, J. 2020. Double-oracle sam-
pling method for Stackelberg Equilibrium approximation
in general-sum extensive-form games. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
2054–2061.
Kasparov, G. 2018. Chess, a Drosophila of reasoning. Sci-
ence, 362(6419): 1087–1087.
Lagoudakis, M. G.; and Parr, R. 2003. Least-squares policy
iteration. The Journal of Machine Learning Research, 4:
1107–1149.
Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.;
Tuyls, K.; Pérolat, J.; Silver, D.; and Graepel, T. 2017. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing sys-
tems, 30.
Leibo, J. Z.; Zambaldi, V.; Lanctot, M.; Marecki, J.; and
Graepel, T. 2017. Multi-agent reinforcement learning in se-
quential social dilemmas. arXiv preprint arXiv:1702.03037.
Letchford, J.; and Conitzer, V. 2010. Computing optimal
strategies to commit to in extensive-form games. In Pro-
ceedings of the 11th ACM conference on Electronic com-
merce, 83–92. ACM.
Letchford, J.; MacDermed, L.; Conitzer, V.; Parr, R.; and
Isbell, C. L. 2012. Computing optimal strategies to commit
to in stochastic games. In Twenty-Sixth AAAI Conference on
Artificial Intelligence.
MacDermed, L.; Narayan, K. S.; Isbell, C. L.; and Weiss, L.
2011. Quick polytope approximation of all correlated equi-
libria in stochastic games. In Twenty-Fifth AAAI Conference
on Artificial Intelligence.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.
Moravčı́k, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337): 508–513.
Munos, R.; and Szepesvári, C. 2008. Finite-Time Bounds
for Fitted Value Iteration. Journal of Machine Learning Re-
search, 9(5).

Murray, C.; and Gordon, G. 2007. Finding correlated equi-
libria in general sum stochastic games.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch.
Perolat, J.; de Vylder, B.; Hennes, D.; Tarassov, E.; Strub, F.;
de Boer, V.; Muller, P.; Connor, J. T.; Burch, N.; Anthony, T.;
et al. 2022. Mastering the Game of Stratego with Model-
Free Multiagent Reinforcement Learning. arXiv preprint
arXiv:2206.15378.
Pérolat, J.; Strub, F.; Piot, B.; and Pietquin, O. 2017. Learn-
ing Nash equilibrium for general-sum Markov games from
batch data. In Artificial Intelligence and Statistics, 232–241.
PMLR.
Pita, J.; Jain, M.; Ordónez, F.; Portway, C.; Tambe, M.;
Western, C.; Paruchuri, P.; and Kraus, S. 2008. ARMOR
Security for Los Angeles International Airport. In AAAI,
1884–1885.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.
Schmid, M.; Moravcik, M.; Burch, N.; Kadlec, R.; David-
son, J.; Waugh, K.; Bard, N.; Timbers, F.; Lanctot, M.; Hol-
land, Z.; et al. 2021. Player of games. arXiv preprint
arXiv:2112.03178.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Vinyals, O.; Babuschkin, I.; Chung, J.; Mathieu, M.;
Jaderberg, M.; Czarnecki, W.; Dudzik, A.; Huang, A.;
Georgiev, P.; Powell, R.; Ewalds, T.; Horgan, D.; Kroiss,
M.; Danihelka, I.; Agapiou, J.; Oh, J.; Dalibard, V.;
Choi, D.; Sifre, L.; Sulsky, Y.; Vezhnevets, S.; Molloy,
J.; Cai, T.; Budden, D.; Paine, T.; Gulcehre, C.; Wang,
Z.; Pfaff, T.; Pohlen, T.; Yogatama, D.; Cohen, J.; McK-
inney, K.; Smith, O.; Schaul, T.; Lillicrap, T.; Apps, C.;
Kavukcuoglu, K.; Hassabis, D.; and Silver, D. 2019. Al-
phaStar: Mastering the Real-Time Strategy Game Star-
Craft II. https://deepmind.com/blog/alphastar-mastering-
real-time-strategy-game-starcraft-ii/. Accessed: 2022-02-
01.
Wang, Y.; Shi, Z. R.; Yu, L.; Wu, Y.; Singh, R.; Joppa,
L.; and Fang, F. 2019. Deep reinforcement learning for
green security games with real-time information. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 1401–1408.
Zhong, H.; Yang, Z.; Wang, Z.; and Jordan, M. I. 2021. Can
Reinforcement Learning Find Stackelberg-Nash Equilibria
in General-Sum Markov Games with Myopic Followers?
arXiv preprint arXiv:2112.13521.

Zinkevich, M.; Greenwald, A.; and Littman, M. 2005.
Cyclic equilibria in Markov games. Advances in neural in-
formation processing systems, 18.

A Proof of Theorem 3
A.1 Preliminaries
The proof follows 2 steps. First, we show that the estimate Ũs is not too different from the optimal Us. Let the depth of a state
D(s) be the longest path needed to reach a leaf, i.e.,

D(s) =

{
0 s ∈ L
maxs′∈C(s) D(s′) + 1 otherwise

.

Since G is finite, D = maxs∈S D(s) and is finite.
Let Ũs be our predicted EPF at state s. For s ∈ S\L, we denote (for this section only) using shorthand

Ũ ′
s = Ũ target

s =

[∧

s′∈C(s) Ũs′

]
(µ) if s ∈ S1[∧

s′∈C(s) Ũs′ ▷ τ(s
′)
]
(µ) if s ∈ S2

be what is obtained from one-step lookahead using Section 3, and for s ∈ L,

Ũs(µ2) = Ũ ′
s(µ2) =

{
r1(s) µ2 = r2(s)

−∞ otherwise
.

For clarity, we denote likewise for the exact EPFs U ′
s (which will be equal by definition to Us).

Domains of EPFs Given any real valued function h : R 7→ R, we denote its domain by Dom[h] = {x|h(x) > −∞}. The
following lemmas ensure that the required domains all match. This theorem is added for completeness; the reader can skip over
this section if desired.
Lemma 1. For all s ∈ S, Dom[Us] = Dom[U ′

s] = Dom[Ũs] = Dom[Ũ ′
s] = [V (s), V (s)],

The proofs are straightforward but trivial, hence they are deferred to Section C

Proof. The first equality was shown in Lemma 3. We can, in fact reuse the proof of Lemma 3 for Ũ ′
s and Ũs. This completes

this Lemma 1.

Hence, we no longer have to worry about mismatched domains.

Upper Concave Envelopes and Left Truncations First, observe that since Ũs is a one-dimensional function,
∧

can be
written alternatively as ∧

s′∈C(s)

Us′

 (µ2) = max
s′,s′′∈C(s)

t∈[0,1];µ′,µ′′∈R
tµ′+(1−t)µ′′=µ2

tUs′(µ
′) + (1− t)Us′′(µ

′′),

that is, the maximum that could be obtained by interpolating between at most two points across 2 children states s′, s′′ ∈ C(s)
(this follows from the fact that all U ’s are 1-dimensional functions (Letchford and Conitzer 2010)).

Recall that τ(s′) is defined only for s′ ∈ C(s), where s ∈ S2. For convenience, we define β(s′) = τ(s′) when s ∈ S2 and
−∞ when s ∈ S1. β plays the same role as τ , since left truncating at −∞ does not change anything, i.e., f ▷ (−∞) = f for
any f : R 7→ R. Using β allows us to perform a ‘dummy’ left truncation when s ∈ S1 and avoid having to split into different
cases.

Our Goal Our goal is to show that assuming that the L∞ loss is low for all states s, i.e.,

max
µ2∈[V (s),V (s)]

|Ũs(µ2)− Ũ ′
s(µ2)| ≤ ϵ (2)

then we will enjoy good performance, i.e, the leader gets a payoff of order O(ϵD) less than optimal (additively).

A.2 Learned EPFs are Approximately Optimal
The first half of the theorem is to show that our learned EPFs Ũs are for all s, close to the true Us pointwise. We prove the main
theorem by strong induction on the states by increasing depth the following. and (1). Our induction hypothesis is

Kj : max
µ2∈[V (s),V (s)]

|Ũs(µ2)− Us(µ2)| ≤ jϵ ∀s where D(s) = j.

By definition, K0 satisfies our requirement since s ∈ L. Thus, the base case is satisfied. Now we prove the inductive case.
Assume that K0, · · · ,Kj−1 are all satisfied. We want to show Kj using (2).

Lemma 2. Let s ∈ S such that D(s) = j. Suppose K0, . . .Kj−1 are true. Then we have |Ũ ′
s(µ2)− U ′

s(µ2)| ≤ ϵ(j − 1) for all
µ2 ∈ [V (s), V (s)].

Proof. Fix µ2. We want to show |Ũ ′
s(µ2) − U ′

s(µ2)| ≤ ϵ(j − 1). Now, let σ̂ = (ŝ′, ŝ′′, t̂, µ̂′, µ̂′′) be the parameters which
achieves the maximum

argmax
s′,s′′∈C(s)

t∈[0,1];µ′,µ′′∈R
tµ′+(1−t)µ′′=µ2

t[Us′ ▷ β(s
′)](µ′) + (1− t)[Us′′ ▷ β(s

′′)](µ′′) (3)

and similarly when we are working with learned EFPs, σ̃ = (s̃′, s̃′′, t̃, µ̃′, µ̃′′)

argmax
s′,s′′∈C(s)

t∈[0,1];µ′,µ′′∈R
tµ′+(1−t)µ′′=µ2

t[Ũs′ ▷ β(s
′)](µ′) + (1− t)[Ũs′′ ▷ β(s

′′)](µ′′), (4)

which are the arguments that optimized give U ′
s(µ2) and Ũ ′

s(µ2) respectively. That is, σ̂ and σ̃ gives how the point at the EPF
with the x coordinate equal to µ2 is obtained as a mixture of at most 2 points from the upper convex envelope (when s′ = s′′,
we simply repeat the 2 points and set t = 1/2 for simplicity). We proceed by showing a contradiction. We have two cases.

Case 1. Suppose that Ũ ′
s(µ2) > U ′

s(µ2) + ϵ(j − 1). Then we have∣∣∣∣∣∣∣∣t̃[Ũs̃′ ▷ β(s̃
′)](µ̃′) + (1− t̃)[Ũs̃′′ ▷ β(s̃

′′)](µ̃′′)︸ ︷︷ ︸
=Ũ ′

s(µ2)>U ′
s(µ2)+ϵ(j−1)

− t̃[Us̃′ ▷ β(s̃
′)](µ̃′) + (1− t̃)[Us̃′′ ▷ β(s̃

′′)](µ̃′′)︸ ︷︷ ︸
≤U ′

s(µ2)

∣∣∣∣∣∣∣∣
=

∣∣∣t̃([Ũs̃′ ▷ β(s̃
′)](µ̃′)− [Us̃′ ▷ β(s̃

′)](µ̃′)
)
+ (1− t̃)

(
[Ũs̃′′ ▷ β(s̃

′′)](µ̃′′)− [Us̃′′ ▷ β(s̃
′′)](µ̃′′)

)∣∣∣
≤ ϵ(j − 1)

(5)

and where first inequality inside | · | follows from our assumption in case 1, and the second from the fact that U ′
s(µ2) was

taken from an argmax, i.e., (3). The third line holds from our induction hypothesis Ki (2), where i ∈ [0, j − 1], the fact that
D(s′) < D(s) = j and how the ▷ operator cannot increase the absolute error of the difference.7 However, these 3 inequalities
cannot hold simultaneously, thus the assumption for Case 1 cannot be true, i.e., we must have Ũ ′

s(µ2) ≤ U ′
s(µ2) + ϵ(j − 1)

Case 2. Suppose that Ũ ′
s(µ2) < U ′

s(µ2)− ϵ(j − 1). Then using a similar derivation we have∣∣∣∣∣∣∣∣t̂[Uŝ′ ▷ β(ŝ
′)](µ̂′) + (1− t̂)[]Uŝ′′ ▷ β(ŝ

′′)](µ̂′′)︸ ︷︷ ︸
=U ′

s(µ2)>Ũ ′
s(µ2)+ϵ(j−1)

− t̂[Ũŝ′ ▷ β(ŝ
′)](µ̂′) + (1− t̂)[Ũŝ′′ ▷ β(ŝ

′′)](µ̂′′)︸ ︷︷ ︸
≤Ũ ′

s(µ2)

∣∣∣∣∣∣∣∣
=

∣∣∣t̂([Uŝ′ ▷ β(ŝ
′)](µ̂′)− [Ũŝ′ ▷ β(ŝ

′)](µ̂′)
)
+ (1− t̂)

(
[Uŝ′′ ▷ β(ŝ

′′)](µ̂′′)− [Ũŝ′′ ▷ β(ŝ
′′)](µ̂′′)

)∣∣∣
≤ ϵ(j − 1)

(6)

where the first inequality inside | · | comes from case 2’s assumption, the second is from the fact that Ũ ′
s(µ2) was taken from

an argmax, i.e., (4). The third line follows from the induction hypothesis Ki, where i ∈ [0, j − 1] and the depth of s. These 3
inequalities cannot hold simultaneously, so our assumption in case 2 cannot be true and Ũ ′

s(µ2) ≥ U ′
s(µ2)− ϵ(j − 1).

Combining the result from both cases gives the desired result.

7Note that since σ̃ is the argmax, we are guaranteed to not have values of µ̃ that lie outside the domains of the truncated EPFs.

Now, we consider the µ2 which has the worst possible discrepancy, which gives

max
µ2∈[V (s),V (s)]

|Ũs(µ2)− Us(µ2)|

≤ max
µ2∈[V (s),V (s)]

|Ũs(µ2)− Ũ ′
s(µ2)|+ |Ũ ′

s(µ2)− Us(µ2)|

= max
µ2∈[V (s),V (s)]

|Ũs(µ2)− U ′
s(µ2)|+ |Ũ ′

s(µ2)− U ′
s(µ2)|

≤ max
µ2∈[V (s),V (s)]

|Ũs(µ2)− Ũ ′
s(µ2)|+ max

µ2∈[V (s),V (s)]
|Ũ ′

s(µ2)− U ′
s(µ2)|

≤ max
µ2∈[V (s),V (s)]

|Ũ ′
s(µ2)− U ′

s(µ2)|+ ϵ

≤ϵj,

(7)

where the second line follows from the triangle inequality, the third line using the equality between Us(µ2) and U ′
s(µ2), the

fourth from the fact that maxx |f(x) + g(x)| ≤ maxx |f(x)|+maxy |g(y)|, the fifth from the assumption (2), the the last line
from Lemma 2. The main theorem follows by induction on D(s), the fact that D(s) is bounded by the depth of the tree, and the
fact that the base case K0 is trivially true.

Theorem 5. If L∞(Ũs, Ũ
′
s) ≤ ϵ for all s ∈ S , then maxµ2∈[V (s),V (s)] |Ũs(µ2) − Us(µ2)| ≤ ϵD, where D is the depth of the

game.

Proof. This follows by the definition of L∞ and the above derivations.

A.3 Leader’s Payoffs from Induced Strategy is Close-To-Expected
Theorem 5 tells us that our EPF everywhere is close (pointwise) to the true EPF if ϵ is small. Now we need to establish the
suboptimality when playing according to π̃, which is a joint policy implicit from Ũs. We begin with some notation.

Let Q̃s(µ2) : [V (s), V (s)] 7→ R be the payoff to P1 assuming we started at state s, promised a payoff of µ2 to P2 and
used the approximate EPFs Ũs for all descendent states s′ ⊒ s (the domain precludes unfulfilled promises). That is, given
σ̃ = (s̃′, s̃′′, t̃, µ̃′, µ̃′′) given by

argmax
s′,s′′∈C(s)

t∈[0,1];µ′,µ′′∈R
tµ′+(1−t)µ′′=µ2

t[Ũs′ ▷ β(s
′)](µ′) + (1− t)[Ũs′′ ▷ β(s

′′)](µ′′), (8)

the induced policy is to play to s̃′ with probability t̃ and a consequent promise of µ̃′, as well as playing to s̃′′ with probability
(1 − t̃) and a promised payoff of µ̃′′. By definition, if s ∈ L, Q̃s = Ũs = Us trivially. We also have the following recursive
equations for a given s ̸∈ L, µ2

Q̃s(µ2) = t̃Q̃s̃′(µ̃
′) + (1− t̃)Q̃s̃′′(µ̃

′′). (9)

Theorem 6.
∣∣∣Q̃s(µ2)− Ũs(µ2)

∣∣∣ ≤ ϵD for all s ∈ S and for all µ2 ∈ [V (s), V (s)].

Proof. The proof is given by strong induction on the D(s) again. Let

Hj :
∣∣∣Q̃s(µ2)− Ũs(µ2)

∣∣∣ ≤ ϵj ∀s where D(s) = j (10)

By definitionH0 is true. Now let us suppose thatH0 . . .Hj−1 is true. We have for s ∈ S, D(s) = j,∣∣∣Q̃s(µ2)− Ũs(µ2)
∣∣∣

≤
∣∣∣Q̃s(µ2)− Ũ ′

s(µ2)
∣∣∣+ ∣∣∣Ũ ′

s(µ2)− Ũs(µ2)
∣∣∣

≤
∣∣∣Q̃s(µ2)− Ũ ′

s(µ2)
∣∣∣+ ϵ

=
∣∣∣t̃Q̃s̃′(µ̃

′) + (1− t̃)Q̃s̃′′(µ̃
′′)− t̃[Ũs̃′ ▷ β(s̃

′)](µ̃′)− (1− t̃)[Ũs̃′′ ▷ β(s̃
′′)](µ̃′′)

∣∣∣+ ϵ

≤t̃
∣∣∣Q̃s̃′(µ̃

′)− Ũs̃′(µ̃
′)
∣∣∣︸ ︷︷ ︸

≤ϵ(j−1)

+(1− t̃)
∣∣∣Q̃s̃′′(µ̃

′′)− Ũs̃′′(µ̃
′′)
∣∣∣︸ ︷︷ ︸

≤ϵ(j−1)

+ϵ

≤ϵj

The second line follows from the triangle inequality. The third line follows from our FA assumption (2). The fourth line follows
from expansion of the definitions of Q̃s and Ũ ′

s, i.e., (9) and (4) The fifth line follows the induction hypothesis and the fact that
s′, s′′ ∈ C(s) have at least one lower depth than s. Also, the truncation operator never causes any element to exceed domain
bounds (which would give −∞ values). By strong induction Hj is true for all j ∈ [0, D] and the theorem follows through
directly.

A.4 Piecing Everything Together
Let µ∗

2 = argmaxµ2
Uroot(µ2), i.e., the promise given to the follower at the root under the optimal policy π∗. Let µ̃2 =

argmaxµ2
Ũroot(µ2), which is the promise to be given to the follower at the root under π̃. We have

Uroot(µ
∗
2)− Q̃root(µ̃2)

=Uroot(µ
∗
2)− Ũroot(µ

∗
2)︸ ︷︷ ︸

|·|≤ϵD

+ Ũroot(µ
∗
2)︸ ︷︷ ︸

≤Ũroot(µ̃2)

−Q̃root(µ̃2)

≤ϵD +
∣∣∣Ũroot(µ̃2)− Q̃root(µ̃2)

∣∣∣
≤2ϵD.

The inequalities in the second line come from Theorem 5 and the definition of µ̃2; specifically that it is taken over the argmax.
The last line comes from Theorem 6. To complete the proof, we simply observe that Q̃root(µ̃2) is precisely r1(π̃) by definition.

B Proof of Theorem 4
The proof is essentially the same as presented in Section A.3, except that we are working with approximate bounds rather than
strict ones. We have, using the new bounds,

For s ∈ S\L, we denote using shorthand

Ũ ′
s = Ũ target

s =

[∧

s′∈C(s) Ũs′

]
(µ) if s ∈ S1[∧

s′∈C(s) Ũs′ ▷ τ̃(s
′)
]
(µ) if s ∈ S2

be what is obtained from one-step lookahead using Section 3, and for s ∈ L,

Ũs(µ2) = Ũ ′
s(µ2) =

{
r1(s) µ2 = r2(s)

−∞ otherwise
.

This is the same as the case with exact V s, V s, but with a stricter truncation τ̃(s′) for each s′ ∈ C(s). We define β̃ just like
before: β̃(s′) = τ̃(s′) when s ∈ S2 and −∞ when s ∈ S1. We follow along the same way as Theorem 3 in Section A.3.

Let Q̃s(µ2) : [V˜ (s), Ṽ (s)] 7→ R be the payoff to P1 assuming we started at state s, promised a payoff of µ2 to P2 and
used the approximate EPFs Ũs for all descendent states s′ ⊒ s (the domain precludes unfulfilled promises). That is, given
σ̃ = (s̃′, s̃′′, t̃, µ̃′, µ̃′′) given by

argmax
s′,s′′∈C(s)

t∈[0,1];µ′,µ′′∈R
tµ′+(1−t)µ′′=µ2

t[Ũs′ ▷ β̃(s
′)](µ′) + (1− t)[Ũs′′ ▷ β̃(s

′′)](µ′′), (11)

the induced policy is to play to s̃′ with probability t̃ and a consequent promise of µ̃′, as well as playing to s̃′′ with probability
(1 − t̃) and a promised payoff of µ̃′′. By definition, if s ∈ L, Q̃s = Ũs = Us trivially. Just like before, we also have the
following recursive equations for a given s ̸∈ L, µ2

Q̃s(µ2) = t̃Q̃s̃′(µ̃
′) + (1− t̃)Q̃s̃′′(µ̃

′′). (12)

Let our induction hypothesis be

Hj :
∣∣∣Q̃s(µ2)− Ũs(µ2)

∣∣∣ ≤ ϵj ∀s where D(s) = j. (13)

By definitionH0 is true. Now let us suppose thatH0 . . .Hj−1 is true. We have for s ∈ S, D(s) = j,∣∣∣Q̃s(µ2)− Ũs(µ2)
∣∣∣

≤
∣∣∣Q̃s(µ2)− Ũ ′

s(µ2)
∣∣∣+ ∣∣∣Ũ ′

s(µ2)− Ũs(µ2)
∣∣∣

≤
∣∣∣Q̃s(µ2)− Ũ ′

s(µ2)
∣∣∣+ ϵ

=
∣∣∣t̃Q̃s̃′(µ̃

′) + (1− t̃)Q̃s̃′′(µ̃
′′)− t̃[Ũs̃′ ▷ β̃(s̃

′)](µ̃′)− (1− t̃)[Ũs̃′′ ▷ β̃(s̃
′′)](µ̃′′)

∣∣∣+ ϵ

≤t̃
∣∣∣Q̃s̃′(µ̃

′)− Ũs̃′(µ̃
′)
∣∣∣︸ ︷︷ ︸

≤ϵ(j−1)

+(1− t̃)
∣∣∣Q̃s̃′′(µ̃

′′)− Ũs̃′′(µ̃
′′)
∣∣∣︸ ︷︷ ︸

≤ϵ(j−1)

+ϵ

≤ϵj

The second line follows from the triangle inequality. The third line follows from our FA assumption (2). The fourth line follows
from expansion of the definitions of Q̃s and Ũ ′

s, i.e., (9) and (4) The fifth line follows the induction hypothesis and the fact
that s′, s′′ ∈ C(s) have at least one lower depth than s. Also, the truncation operator never causes any element to exceed
domain bounds (which would give −∞ values). By strong induction Hj is true for all j ∈ [0, D]. Finally, we observe that
Q̃s(µ2) = R1(π̃) when µ̃2 = argmaxµ2

Ũs(µ2). This completes the proof.

C Proof of Lemma 1

Lemma 3. For all s ∈ S, Dom[Us] = Dom[U ′s] = [V (s), V (s)].

Proof. The first equality is by definition. We now show that Dom[Us] = [V , V] by definition. Consider the state s we are
applying (1) to and the 2 possible cases.

Case 1: s ∈ S1. By definition V (s) = maxs′∈C(s) V (s′), and V (s) = mins′∈C(s) V (s). First, observe that

max {Dom [U ′
s]} = max

Dom

 ∧
s′∈C(s)

Us′

= max

s′∈C(s)
max {Dom [Us′]}

= max
s′∈C(s)

V (s′)

= V (s),

(14)

where the second line follows from the fact that the largest x-coordinate after taking the upper-concave-envelope is the largest
of the largest-x coordinates over each Us′ . Similarly, we have

min {Dom [U ′
s]} = min

Dom

 ∧
s′∈C(s)

Us′

= min

s′∈C(s)
min {Dom [Us′]}

= min
s′∈C(s)

V (s′)

= V (s),

(15)

where the second line comes again from the fact that the lowest x-coordinate after taking upper concave envelopes
is the smallest of all the smallest x-coordinates over each Us′ . Now, (14) and (15) established the lower and up-
per limits of U ′

s. Since U ′
s is concave, for every min {Dom [U ′

s]} ≤ µ2 ≤ max {Dom [U ′
s]} we have U ′

s(µ2) ≥
min (U ′

s(min {Dom [U ′
s]}), U ′

s(max {Dom [U ′
s]})) > −∞. This completes Case 1.

Case 2: s ∈ S2. By definition, V (s) = maxs′∈C(s) V (s′) and V (s) = maxs′∈C(s) V (s′) (note the difference with Case 1,
since P2 decides the current action). We again work out upper and lower bounds of Dom[U ′

s].

max {Dom [U ′
s]} = max

Dom

 ∧
s′∈C(s)

Us′ ▷ τ(s
′)

= max

s′∈C(s)
max {Dom [Us′ ▷ τ(s

′)]}

= max
s′∈C(s)

max
{
[V (s′), V (s′)] ∩ [τ(s′),∞)

}
= max

s′∈C(s)
V (s′)

= V (s),

(16)

where the fourth line follows from the fact that = maxs′∈C(s) V (s′) ≥ maxs!∈C(s);s! ̸=s′ V (s!) ≥ maxs!∈C(s);s! ̸=s′ V (s!) =
τ(s′) (i.e., that the highest x coordinate in U ′

s is never part of the left-truncation step). For any s′ ∈ C(s),

Dom [Us′ ▷ τ(s
′)] =

∅ max {Dom[Us′]} < τ(s′)

Dom [Us′] τ(s′) < min {Dom [Us′]}
[τ(s′),max {Dom[Us′]}] otherwise

. (17)

For s′ where Dom [Us′ ▷ τ(s
′)] ̸= ∅, we have

min {Dom [Us′ ▷ τ(s
′)]} = max

s′′∈C(s)
min {Dom [Us′′]} . (18)

Note that this is not dependent on s′. Also, note that it cannot be the case that Dom [Us′ ▷ τ(s
′)] = ∅ for all s′. In particular,

consider s∗ = argmaxs′∈C(s) max {Dom[Us′]}, clearly, max {Dom[Us′]} ≥ τ(s∗) so we do not wind up with the empty set
in (17). For simplicity, let min ∅ =∞. Hence, we can write

min {Dom [U ′
s ▷ τ(s

′)]} = min

Dom

 ∧
s′∈C(s)

Us′ ▷ τ(s
′)

= min

s′∈C(s);
min {Dom [Us′ ▷ τ(s

′)]}

= min
s′∈C(s)

max
s′′∈C(s)

min {Dom [Us′′]}

= max
s′′∈C(s)

min {Dom [Us′′]}

= V (s).

(19)

The first line is by definition. The second line uses the same argument as in case 1. The second line follows (18) and the fact
that at least one s∗ exists. The last line follows from the definition of V (s). As with case 1, we use (16), (19) and the fact that
U ′
s is concave to show that U ′

s(µ2) > −∞ for µ2 ∈ [V (s), V (s)]. This completes the proof.

We are now ready to tackle the proof of Lemma 1 (reproduced here): For all s ∈ S,

Dom[Us] = Dom[U ′
s] = Dom[Ũs] = Dom[Ũ ′

s] = [V (s), V (s)],

Proof. The first equality was shown in Lemma 3. We can, in fact reuse the proof of Lemma 3 by replacing U ′
s and Us with Ũ ′

s

and Ũs. This completes this Lemma 1.

D Extensions to Games with Chance
For games with chance, backups will involve infimal convolutions (Cermák et al. 2016). Denote the set of chance nodes by SC.
For s ∈ SC and we denote the probability of transition for from s to s′ to be πC(s

′, s). The set of equations at (1) has to be
augmented by the case where s ∈ SC. In these cases, we have

Us(µ) =
⊕

s′∈C(s)

πC(s
′, s)Us′(µ/πC(s

′, s)),

s

s′

(10,−1) (−1, 1)

stay
s′′

(0, 0) (4, 0.5)

exit

Figure 7: Sample game for difference between SSE and SEFCE.

Figure 8: From left to right: EPFs based on the game in Figure 6. (a) Enforceable EPF at s′′, (b) EPF for SSE at s, (c) EPF for
SEFCE at s. The EPF at s′ is the same as that in Figure 1b.

where
⊕

is the maximal-convolution operator (similar to the inf-conv operator for convex functions),

f1
⊕

f2(µ) = sup
y
{f1(µ− y) + f2(y)|y ∈ R} .

Refer to (Cermák et al. 2016) for more details as to why
⊕

is the right operator to be used. It is well known that
⊕

can be
efficiently implemented (linear in the number of knots) when functions are piecewise linear concave (sort the line segments
in all fi based on gradients and stitch these line segments together in ascending order of gradients). Thankfully, this holds for
EPFs. Furthermore, applying

⊕
to piecewise linear concave functions gives another piecewise linear concave function. Hence,

EPFs of Ũs for each state and trained again using the L∞ loss. Theorem 3 still holds with some minor additions (we omit the
proof in this paper).

E Comparison between EPFs between SSE and SEFCE
One of the key disadvantages of EPFs in SSE is that they could be non-concave, or worst still, discontinuous. Consider the
game in Figure 6 and the EPFs in Figure 8. In Figure 8b, we can see that the EPF is neither concave or even continuous.
This is because the SSE takes pointwise maximums at follower nodes and not upper-concave envelopes. On the other hand,
Figure 8c shows the EPF of an SEFCE. Here, it is much better behaved, being a piecewise linear concave function.Furthermore,
as mentioned in Theorem 1, the EPF in SEFCE dominates (is always higher or equal to at all x-coordinates) the EPF of SSE.
This means the SEFCE can give P1 more payoff than SSE. Also, every SSE is an SEFCE, but no vice versa.

See (Bošanskỳ et al. 2017) for a breakdown of computational complexity for different classes of games, (e.g., correlation/sig-
naling (correlated, pure, behavioral), whether there is chance, and different levels of imperfect information).

F A Useful Way of Reasoning about SEFCE
For readers who are more familiar with SSE or are uncomfortable with the ‘correlation’ present in SEFCE, we give an easy
interpretation of SEFCE in perfect information games. Given G, consider a modified game G′, where before a follower vertex
s, we add a leader vertex s′ just before it with two actions, where each action leads to a copy of the game rooted at the follower
vertex s. This construction is repeatedly performed in a bottom-up fashion. After this entire process is completed, we will find
the SSE of G′ (which is a much larger game than G).

The only purpose of this leader vertex is to allow mixing between follower strategies. Now, the recommendation to the
follower is explicit via s′. Each action in s′ corresponds to a single recommended action for the follower at s. Note that only a
binary signal is needed (since mixing will only occur between at most 2 follower actions). Let sa and sb be duplicate follower
vertices. Crucially, the leader is allowed to commit to different strategies for each subgame following sa and sb. The SSE in G′

can be mapped to the SEFCE in G. Since in SSE, best responses are pure, and the probabilities leading to sa and sb (from the
leader signaling node) give the probabilities at state s in G for the (pure) action to be taken at sa and sb.

Augmented signaling vertex

sa

s′a

(10,−1) (−1, 1)

stay
s′′a

(0, 0) (4, 0.5)

exit
sb

s′b

(10,−1) (−1, 1)

stay
s′′b

(0, 0) (4, 0.5)

exit

Figure 9: Example of duplicated follower vertices based off the game in Figure 6.

We reiterate that this construction is not one that is practical, but rather one to help to gain intuition for the SEFCE. The
solution using the constructed game is the same as the SEFCE by running the algorithm in Section 3 and seeing how the

∧
operator (for SSE) at the added root in G′ mimics the follower vertex in SEFCE.

G Implementation Details
G.1 Borrowing Techniques from RL and FVI
We employ target networks (Mnih et al. 2015). Instead of performing gradient descent on the ‘true’ loss, we create a ‘frozen’
copy of the network which we use the compute Ũ ′

s (i.e., Ũ target
s). However, Ũ is still computed from the main network (with

weights to be updated in gradient descent). The key idea is that the target Ũ ′
s is no longer update at every epoch, which can

destabilize training. We update the target network with the main network once every 2000 episodes.
For larger games, we noticed that the bulk of loss was attributed to a small fraction of states. To focus attention on these

states, we employ prioritized replay (Schaul et al. 2015). We set the probability of selecting each state s in the replay buffer to
be proportionate to the square root of the last loss, i.e., L(Us, U

′
s)

α observed. We used α = 0.5 for convenience ((Schaul et al.
2015) suggest a value of 0.7).

Finding out the best hyperparameters for these add-ons is beyond the scope of this paper and left as future work.

G.2 Modified Loss Function
Our experience is that L∞ does manage to learn EPFs well, however, learning can be slow and sometimes unstable. Our
hypothesis is that slow learning is due to the fact only the point responsible for the loss, as well as its neighbors has its
coordinates updated during training. This very ‘local’ learning of Ũs makes learning slow, particularly at the start of training.
Second, we found that rather than L∞, using the square of the largest absolute pointwise difference tends to stabilize training
(though Theorem 3 would have to be modified to be in terms of

√
ϵ instead).

Let Us and U ′
s be two EPFs represented by k1 and k2 knots. Let X1 = {x1, . . . xk1

} and X2 = {x′
1, . . . x

′
k2
} be the

x-coordinates of the knots in Us and U ′
s respectively. Then, we use the following loss

L(Us, U
′
s) =

∑
x∈X1∪X2

(Us(x)− U ′
s(x))

2
. (20)

This loss still avoids costly promises since we are still taking pointwise differences (rather than over an integral).

G.3 Practical Implementation of Upper Concave Envelope and Left-Truncation
Theoretically, finding the upper concave envelope of k points can be found in linear time. However, this algorithm requires
a significant number of backtracking and if-else statements, making this implementation unsuitable for batch operations on a
GPU. The alternative which we employ runs in O(k3) time which is in practice much faster when run on a GPU. For every
distinct pairs of points (xi, yi), and (xj , yj), we check, for every point (xa, ya) where xa ∈ [xi, xj] whether (xa, ya) lies below
or above the line segment (xi, yi), (xj , yj). If a point (xa, ya) is below any such line segment, we flag it as ‘not included’,
indicating that the upper concave envelope will not include this point. The overall scheme is complicated (see attached code)
but runs significantly faster than the linear time method when batch sizes are greater than 32. An important downside, however
is (a) the amount of GPU memory used for intermediate calculations and (b) the poor scaling (cubic) in terms of number of
knots (which is βm, where β is the branching factor and m the number of knots) per EPF.

Dealing with different number of actions at each vertex and truncated points. Rather than removing points and padding
them (to make each batch fit nicely in rectangular tensor), we maintain a ‘mask’ matrix which indicates that such a point is
inactive. These points will not be used in computation of upper concave envelopes (both as potential points and as part of a line
segment). Furthermore, this scheme makes it convenient to truncate points (simply mask those truncated points out and perform
interpolation to get the new point on at τ(s′)).

G.4 Training Only Using Decreasing Portions of EPF
Kearning the increasing portion of an EPF is not useful, since points there are Pareto dominated. Hence, when extracting π̃ we
will never select those points. For example in Figure 8b and 8c, if there were parts of the EPF in the yellow regions, they would
not matter since the leader would select the maximum point with x-coordinate at 0 instead.

If we instead consider a slight variation of the EPF Us : R 7→ R ∪ {−∞} that gives the maximum leader payoff given the
follower gets a payoff of at least µ2 (rather than exactly µ2). This slight change ensures that EPFs are never increasing, while
keeping all of the properties we proved earlier on. Omitting the increasing portions saves us from wasting any of the m knots
on the increasing portions, and instead focus on the decreasing portion (where there is a real trade-off between payoffs between
P1 and P2. One example of this is shown in Figure 4b and Figure 4c, where we showed the ‘true’ EPF and the modified EPFs
that we use for our experiments.

We describe what happens concretely. Let Ũ ′
s be computed based on (1) with its representation given by

the set of knots {(x1, y1), . . . , (xk, yk)}, assumed to be sorted in ascending order of x-coordinates, and where
x1 = V (s). Let the j = argmaxi yi. Then, the set of points which we use for training is the modified set
{(V (s), yj), (xj , yj), (xj+1, yj+1), . . . (xk, yk)}.

G.5 Sampling of Training Trajectories
One of the design decisions in FVI is how one should sample states, or trajectories. In the single-player setting, it is com-
monplace to use some form of ϵ-greedy sampling. In our work, we use an even simple sampling scheme which takes actions
uniformly at random.

There are a few exceptions. For RC sampled states uniformly at random. This was made possible because the game was
small and we could enumerate all states. The implication is that each leaf is sampled much more frequently than from actual
trajectories. Our experience is that since the game is small, getting samples from uniform trajectories should still work well.
For TANTRUM, the game has a depth of 50. In many cases, states in the middle are not learning anything meaningful because
their children EPFs have not been learned well. As such, we adopt a ‘layered’ approach, where initially we only allow for states
s at most dmax to be added to the replay buffer, dmax is gradually increased as training goes on. This helps EPFs to be learned
for states deeper in the tree first before their parents. We find that for TANTRUM (the non-featurized version with n = 25), this
was essential to get stable learning of EPFs (recall that in our setting, TANTRUM has a size of roughly ∼ 325 and a depth of 50.
A uniform trajectory leaves some states to be sampled with probability 1/250). We start off at dmax = 20 and reduce dmax by 1
for every 50000 epochs. For other games, uniform trajectories work well enough since the game is not too deep.

H Additional Details on Experimental Setup
H.1 Environment Details
For all our experiments, the network is a multilayer fully connected network of width 128, depth 8, ReLU activations and
number of knots m = 8. We used the PyTorch library (Paszke et al. 2017) and a GPU to accelerate training. No hyperparameter
tuning was done.

H.2 RC Map Generation Details
Maps were generated with each reward map being drawn independently from a log Gaussian process (with query points given
by the (x, y) coordinates on the grid). We use the square-exponential kernel, a length scale of 2.0 and a standard deviation of
0.1. This way of generating maps was to encourage spatial smoothness in rewards for more realism. Figure 10 give examples
of maps generated using this procedure. From the figures, one cans see that good regions for P1 may not be good for P2 and
vice versa.

H.3 TANTRUM Generation
For [TANTRUM], the values of q2 were chosen (somewhat arbitrarily) to be in {1.5, 2.1, 3.4, 5.1, 6.7}.

H.4 Training Hyperparameters
We used the Adam optimizer (Kingma and Ba) with AMSGrad (Reddi et. al.) with a learning rate of 1e-5 (except for RC, where
we found using a learning rate of 1e-4 was more suitable). We use the implementation provided in the PyTorch (Paszke et al.
2017) library. The replay buffer was of a size of 1M. The minibatch size was set to 128. The target network’s parameters was
updated once every 2000 training epochs.

H.5 Number of Epochs and Termination Criterion
Unfortunately, it is very rare to have a small loss for every single state. Hence, we terminate training at a fixed iteration. The
number of epochs are given in Table 1.

Figure 10: Left to right: An example of reward maps used for P1 and P2 in RC+.

Num Epochs State sampling method Prioritized replay Traj. frequency
RC 2M Random state N/A N/A

TANTRUM 4M Unif. trajectory, layered Yes 10
Feat. TANTRUM 2.7M Uniform trajectory Yes 10

RC+ 1.7M Uniform trajectory Yes 20

Table 1: Differences in experimental setups over each game. Traj. frequency refers to how many epochs before we sample a
new trajectory.

I Qualitative Discussion of Optimal Strategies in TANTRUM
We explore TANTRUM in the special case when q1 = 1 and q2 > 1. Intuitively, we should ‘use’ as many threats as possible.
That is achieved by the leader committing to (−1,−1) for all future states. If P1 does that from the beginning, it will give P2

−n (the number of times the stage game is repeated) payoff to each player. Naturally, one upper-bound on how much P1 can
get is n/q2, that is, P2 chooses to accede on average of n/q2 times per playthrough. P1 cannot possible get more since that
would lead to to P2 losing more than n (which is the worst possible threat the leader can make from the beginning).

In our experiments, this was indeed true, and can be achieved by the following strategy. Let π be such that (a) the P1 plays
to (0, 0) at all leader vertices and P2 accedes for the first j = ⌊n/q2⌋ stages with probability 1. At the j+1-th vertex, it plays a
mixed strategy (or rather, it receives the recommendation to mix) strategies, with probability (n− jq2)/q2 it accedes. Clearly,
the expected payoff for P2 is −n, and P2 cannot do any better.

However, this result does not hold for all settings, typically when n is small. This is because we need to consider the threat
is strong enough at every stage. Consider the case where n = 3 and q2 = 2. Our derivation suggests that at the first stage, the
follower accedes with probability 1 and at the second stage, it accedes with probability 0.5.

At the first stage, P2 is indeed incentivized to accede. since if it will suffer from −3 if not, since acceding yields −2 payoff,
which when combined with the expected payoff of −1 in the future, is equivalent to the threat of −3. At the second stage, it
is just barely incentive compatible for the follower to accede. Specifically, if the player accedes, it will receive a payoff of −4
(it has already accumulated −2 from the previous stage). On the other hand, the grim trigger threat gives a payoff of only −4
(−2 from the past and −2 from the future). Hence, after receiving the recommendation P2 is just incentivized to not deviate.
However, when q2 is increased by just a little (say to 2.1), this incentive is not sufficient. The future threat from not acceding
is −2, but the follower already loses 2.1 from acceding. 8

In general, for our derived bound to be tight, we will require

n− ⌊n/q⌋︸ ︷︷ ︸
threat from grim trigger

≥ q︸︷︷︸
cost from acceding this time round

,

that is, at the last accede recommendation (possibly with some probability), we still have enough rounds remaining as threats
to maintain incentive compatibility. Technically we require this for all previous rounds; however this condition being satisfied
for the last round implies that it is satisfied for all previous rounds.

8This phenomena is very similar to the difference between a coarse correlated equilibrium and a regular CE. The difference is that a player
has to decide to deviate before or after receiving its recommended actions.

We can also see from this discussion that in this repeated setting, it is always beneficial to recommend accede to the follower
higher up the tree; this way, there is more room for the leader to threaten the follower with future (−1,−1) actions.

Featurized TANTRUM As far as we know, there is no simple closed form solution for featurized TANTRUM.

