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Abstract

Correlated Equilibrium is a solution concept that is more gen-
eral than Nash Equilibrium (NE) and can lead to outcomes
with better social welfare. However, its natural extension to
the sequential setting, the Extensive Form Correlated Equilib-
rium (EFCE), requires a quadratic amount of space to solve,
even in restricted settings without randomness in nature. To
alleviate these concerns, we apply subgame resolving, a tech-
nique extremely successful in finding NE in zero-sum games
to solving general-sum EFCEs. Subgame resolving refines a
correlation plan in an online manner: instead of solving for
the full game upfront, it only solves for strategies in subgames
that are reached in actual play, resulting in significant compu-
tational gains. In this paper, we (i) lay out the foundations to
quantify the quality of a refined strategy, in terms of the social
welfare and exploitability of correlation plans, (ii) show that
EFCEs possess a sufficient amount of independence between
subgames to perform resolving efficiently, and (iii) provide
two algorithms for resolving, one using linear programming
and the other based on regret minimization. Both methods
guarantee safety, i.e., they will never be counterproductive.
Our methods are the first time an online method has been ap-
plied to the correlated, general-sum setting.

Introduction
Correlation between players is a powerful tool in game the-
ory. The Correlated Equilibrium (CE) is an equilibrium that
allows for players to coordinate actions with the aid of a me-
diator or a randomized correlation device, and is known to
allow for outcomes which lead to a significantly higher so-
cial welfare as compared to solution concepts which require
independent play, such as Nash Equilibrium (NE), on top of
being computationally more tractable. In a CE, the mediator
recommend actions privately to the players according to a
probability distribution over joint actions that is known to all
players, and the players have no incentive to deviate from the
recommended action if they are perfectly rational. A natural
extension of CE to extensive form games (EFG) is the Ex-
tensive Form Correlated Equilibrium (EFCE), where players
are recommended actions at each decision point (Von Sten-
gel and Forges 2008). Unfortunately, solving and storing an
EFCE typically requires space that is quadratic in the size
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of the game tree. This is a significant barrier towards solv-
ing large games: for example, storing an EFCE for a game
of Battleship (Farina et al. 2019a) with a grid size of 3 × 2
requires a vector with more than 108 entries.

Over the last decade, a technique known as subgame re-
solving has gathered much attention amongst those look-
ing to solve large games. The idea behind subgame resolv-
ing is to adopt a simple blueprint strategy at the beginning,
and to compute refinements of the strategy in an online
manner only when the game has entered a subgame. This
means that one need not compute strategies in branches of
the game which were never reached in actual play, just like
with limited-depth search in perfect information games like
chess. Rising into prominence because of the successes of
superhuman-level poker bots such as Libratus (Brown and
Sandholm 2017, 2018), subgame resolving has since been
studied from other angles (Zhang and Sandholm 2021), ex-
tended to other equilibrium concepts (Ling and Brown 2021)
and applied in practice to, multiplayer games like Hanabi
(Lerer et al. 2020) and Diplomacy (Gray et al. 2021). How-
ever, subgame resolving has primarily been applied to the
zero-sum or cooperative settings, with few inroads in the
correlated setting, where the objective is to get players to
coordinate despite potentially having misaligned interests.

In this paper, we introduce subgame resolving for EFCE.
Instead of announcing the full correlation plan that specifies
the probability of recommending different actions at each
decision point, the mediator computes the EFCE strategies
online. Conceptually, it can be viewed as having the media-
tor publish the algorithm of choosing recommended actions,
and the algorithm is designed in a way such that the rational
players will have no incentive to deviate from the recom-
mended actions. Our contributions are twofold. First, we lay
out the framework for safe subgame resolving for EFCE in
terms of the exploitability of a correlation plan with respect
to a correlation blueprint. Second, we show that for games
without chance, the structure of the polytope of correlation
plans contains a sufficient level of independence between
subgames to facilitate independent solving. Third, we pro-
vide two refinement algorithms, the first based on a modifi-
cation of the linear program (LP) of Von Stengel and Forges
(2008), and the second utilizing a recent and more efficient
method based on regret minimization (Farina et al. 2019b).
To the best of our knowledge, this is the first instance of sub-



game resolving being applied to the correlated setting. We
experimentally show its scalability in benchmark games.

Background and Related Work
Let G be a 2-player extensive-form-game without chance.
This is represented by a finite game tree: nodes represent
game states, belonging to either player P1 or P2, while ac-
tions are represented by edges directed down the tree. To
represent imperfect information, G is supplemented with
information sets (infosets) Ii ∈ Ii, i ∈ [2], which are
collection of states belonging to but are indistinguishable
to Pi. States in the same infoset contain the same actions
ai ∈ A(Ii). We denote by ha the state that is reached im-
mediately after taking action a at state h. We say that state
h precedes (@) h′ if h 6= h′ and h′ is a descendent of h in
the game tree, and use the notation h v h′ when allowing
h = h′. We assume players have perfect recall, that is, play-
ers never forget past observations and past actions. The set
of terminal states L are known as leaves. Each leaf is associ-
ated with utilities received by each player ui(h). For a given
leaf h, the social welfare is given by u1(h) + u2(h).

We define the set of sequences for Pi as the set Σi :=
{(I, a) : I ∈ Ii, a ∈ A(I)}∪{∅}, where ∅ is known as the
empty sequence. For any infoset Ii ∈ Ii, we denote by σ(I)
the parent sequence of I , which is defined as the (unique) se-
quence which precedes I from the root to any node in I; if no
such sequence exists, then σ(I) = ∅. Sequences in Σi form
a partial order; for sequences τ = (I, a), τ ′ = (I ′, a′) ∈ Σi,
we write τ ≺ τ ′ if there exists states ha, h′ ∈ I ′ belong-
ing to Pi such that ha v h′, and write τ � τ ′ if allowing
τ = τ ′. If in addition, σ(I ′) = τ , we say that τ ′ is an imme-
diate successor of τ and write τ ≺1 τ

′. Since the game has
no chance, each leaf h ∈ L is uniquely identified by a pair of
sequences (σ1, σ2). With a slight abuse of notation we write
(σ1, σ2) ∈ L, and denote corresponding player payoffs and
social welfare by ui(σ1, σ2) and u(σ1, σ2).

Sequence-form strategies In the sequence form, a
(mixed) strategy for Pi is compactly represented by a vector
xi, indexed by the sequences σ = (I, a) ∈ Σi. The entry
xi[σ] contains the product of the probabilities of Pi taking
actions from the root to information set I1, including a it-
self, with the base case given by xi[∅] = 1. Hence, valid
sequence-form strategies must satisfy the ‘flow’ constraints;
for every I ∈ Ii, we have

∑
a∈A(I) xi[(I, a)] = σ(I).

Sequence-form strategies have size roughly equal to the
number of actions of the player, while flow constraints can
be seen as a generalization of the sum-to-one constraints for
strategies in the simplex.

Extensive-Form Correlated Equilibria
Extensive-form correlated equilibria (EFCE) is a natural ex-
tension of CE to EFGs. Unlike regular CEs, players do not
receive recommendations for the full game upfront; instead,
recommendations are received sequentially, and only for in-
fosets the players are currently in. In the original paper by
Von Stengel and Forges (2008), this is achieved by means

1Perfect recall means there is only one such series of actions.

of sealed recommendations, while Farina et al. (2019a) have
the mediator generating recommendations over the course
of the game, but ceasing all future recommendations if a
player deviates from a recommendation. We call the rec-
ommended actions trigger sequences σ! (Dudík and Gordon
2009). Trigger sequences contain the last recommended ac-
tion from the mediator before any deviation, and implicitly
contains information about all previous recommendations
(due to perfect recall). EFCEs are incentive-compatible,
players do not expect to benefit by unilaterally deviating.

Polytope of Correlation Plans A significant benefit of
EFCEs over regular CEs is computational cost: computing
a CE that achieves maximum social welfare is NP-complete
(Von Stengel and Forges 2008), while in 2-player perfect re-
call games without chance2, the constraints that define an
EFCE may be expressed in a polynomial number of linear
constraints and hence may be solved using a linear program.
Crucial to these positive results is a theorem by Von Stengel
and Forges which characterizes Ξ, the polytope of correla-
tion plans which compactly represents the space of joint (re-
duced) normal-form strategies up to strategic equivalence.

Definition 1. (Connected infosets, I 
 I ′) Let I, I ′ be in-
fosets from either player. We say that I, I ′ are connected and
write I 
 I ′ if there exists nodes u ∈ I, v ∈ I ′ in G lying
on a path starting from the root.

Definition 2. (Relevant sequences, σ1 ./ σ2) Let σ1 ∈
Σ1, σ2 ∈ Σ2. We say that the sequence pair (σ1, σ2) is rel-
evant, denoted by σ1 ./ σ2 if (i) either σ1 or σ2 is ∅ or (ii)
σ1 = (I1, a1), σ2 = (I2, a2) for I1 
 I2 and some actions
a1, a2. For convenience, we use the same notation σ1 ./ I2
when either σ1 = ∅ or if σ1 = (I1, a1) and I1 
 I2, with a
symmetric definition for I1 
 σ2.

Definition 3. (Von Stengel and Forges) Let G be a perfect
recall game without chance. Then, Ξ is a convex polytope
of correlation plans which contains non-negative vectors in-
dexed by relevant sequence pairs, with constraints

Ξ :=

ξ ≥ 0 :

ξ[∅,∅] = 1,∑
a∈A(I) ξ[(I1, a), σ2] = ξ[σ(I1), σ2],∑
a∈A(I) ξ[σ1, (I2, a)] = ξ[σ1, σ(I2)]


where the second (and third) constraint is over all I1 ./ σ2

(σ1 
 I2).

Visually, one can view Ξ as a 2-dimensional ‘checker-
board’ of size |Σ1| · |Σ2| with entries to be filled in in-
dices where σ1 ./ σ2. The second and third constraints
are simply the sequence-form constraints (Von Stengel and
Forges 2008) applied to each row and column of the checker-
board. For example, for the game in Figure 1, all sequence
pairs are relevant, and we have row constraints ξ[σ1, `x] +
ξ[σ1, rx] = ξ[σ1,∅] and ξ[σ1, `y] + ξ[σ1, ry] = ξ[σ1,∅] for
all sequences σ1 ∈ Σ1, and column constraints ξ[G, σ2] +
ξ[B, σ2] = ξ[∅, σ2], ξ[XG, σ2] + ξ[YG, σ2] = ξ[G, σ2], and
ξ[XB , σ2] + ξ[YB , σ2] = ξ[B, σ2] for all σ2 ∈ Σ2.

2and more generally in games that are triangle-free(Farina and
Sandholm 2020)
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Figure 1: Left: Modified signaling game used in (Von Sten-
gel and Forges 2008) with 2 subgames. Right: Correlation
plan ξ. Circles denote fill-in order under the decomposition
of Farina et al. (2019b). Dashed rectangles show sequence
pairs in different subgames.

LP-based EFCE solvers. Observe that Ξ contains a poly-
nomial number of unknowns and linear constraints. A cor-
relation plan in Ξ is a EFCE if it also satisfies incentive
constraints that enforce incentive compatibility such that
it is optimal for a player to follow the recommendation.
Von Stengel and Forges show that the incentive constraints
can be also expressed in a polynomial number of linear
constraints over ξ. Specifically, incentive constraints when
σ! = (I, a!) is recommended for P1 (the case for P2 follows
naturally) are expressed by3

µ(σ!) ≥ β(σ′;σ!) σ′ = (I, a′), a′ ∈ A(I)\{a!} (1)

µ(σ) =
∑

σ2;(σ,σ2)∈L

u1(σ, σ2)ξ[σ, σ2] +
∑
σ′�1σ

µ(σ′) (2)

β(σ1;σ!) =
∑

(σ1,σ2)
∈L

u1(σ1, σ2)ξ[σ!, σ2] +
∑

I′;σ(I′)
=σ1

ν(I ′;σ!) (3)

ν(I;σ!) ≥ β(σ;σ!) a ∈ I(I) (4)

Here, µ(σ) gives the expected utility of P1 if he abides to
this and all following recommendations. Together, (3) and
(4) recursively define the values of the best response of P1

for deviating to σ′ given σ! was recommended. The term
ξ[σ!, σ2] essentially contains the (unnormalized) posterior of
P2’s sequence given that σ! was recommended.

Bilinear Saddle-point Problems and Regret Minimiza-
tion More recent work by (Farina et al. 2019a,b) show that
the problem of finding an EFCE can be formulated as a bi-
linear saddle point problem, i.e., an optimization problem of
the form minx∈X maxy∈Y xTAy. Conceptually, this can be
seen a zero-sum game between two entities, (i) a mediator,
who optimizes ξ ∈ Ξ, and (ii) a deviator, who selects, for
each sequence σ! ∈ Σi, the strategy (for all σ � σ!) that is to
be taken after deviating from σ!, given the mediator’s choice
of ξ. Essentially, the mediator tries to increase the value of

3Readers familiar with the work of Von Stengel and Forges
(2008) will notice that we use a slightly different LP. This is to
make our future definition of exploitability more convenient.

µ, while the deviator seeks to increase ν, which makes the
inequality in (1) more difficult to achieve. Farina et al. char-
acterize Ξ in terms of a series of convexity-preserving oper-
ations known as scaled extensions and provide a regret min-
imizer for sets constructed via scaled extensions. This con-
struction leads to an efficient EFCE solver that runs in linear
space, which we adapt in one of our resolving algorithms.

Quality of correlation plans The quality of any correla-
tion plan ξ is measured by (i) its expected social welfare,∑

(σ1,σ2)∈L ξ[σ1, σ2]u(σ1, σ2), where u is typically the pay-
off sum u1 + u2, and (ii) the degree to which the ξ violates
the incentive constraints.
Definition 4. (Exploitability) Given a trigger sequence σ!

of P1, and a strategy ξ ∈ Ξ, the value of the best-deviating
response to σ! = (I, a!) is given by

β∗(ξ;σ!) = max
a∈I\{a!}

β((I, a), ξ;σ!)

β(σ, ξ;σ!) =
∑

σ2:(σ,σ2)∈L

u1(σ, σ2)ξ[σ!, σ2] +
∑

I;σ(I)=σ

ν(I, ξ;σ!)

ν(I, ξ;σ!) = max
a∈I{a′}

β((I, a), ξ;σ!)

with a similar definition for P2. The exploitability of ξ for a
trigger sequence σ! is given by

δ∗(ξ, σ!) = β∗(ξ;σ!)− µ(ξ, σ!)

where µ(ξ, σ!) is the value of the σ! if it and all future rec-
ommendations are followed, as defined in (2).

β∗(ξ;σ!) is the highest reward a player can get from de-
viating from the trigger sequence σ!, while δ∗ measures the
gain from doing so. If δ∗(ξ;σ!) ≤ 0 for all σ! ∈ I1∪I2, then
ξ is an EFCE. In LP-based solvers, the social welfare is max-
imized through the objective function, while exploitability
is ≤ 0 using linear constraints. In the regret minimization
method, exploitability is bounded by the average regret in-
curred by the solvers, which goes to 0 at a rate of 1/

√
T .

Maximizing social welfare with regret minimizers typically
requires performing binary search.

Subgames
An EFG’s tree structure provides a natural means of de-
composing the problem of solving a game into smaller sub-
problems over subtrees. However, in imperfect information
games, we will require additional restrictions..

Definition 5. (Subgame) Let G be an EFG with perfect re-
call. Let H be a subset of nodes in G and ǦH be the sub-
graph induced by H . We call ǦH a subgame of G when: (i)
if state s ∈ H , then s′ A s implies s′ ∈ H , and (ii) for all
information sets I ∈ I1 ∪ I2, we have H ∩ I = I or ∅.4

Definition 6. (Subgame Decomposition) Let H = {Hj} be
sets of vertices of G. We callH a valid subgame decomposi-
tion if (i)H contains non-intersecting sets, (ii) eachHj ∈ H
induces a valid subgame ǦHj (Ǧj for short).

4Alternatively if h ∈ Ǧ and belongs to some infoset I , then all
states h′ ∈ I are contained in Ǧ.



For this paper, we will assume that we are equipped with
a valid subgame decomposition H, which induces J dis-
joint subgames {Ǧj}. There are many possible ways to ob-
tain subgame decomposition, but by far the most natural and
common one is based on public information. In this paper,
we make no additional assumptions on subgames apart from
those in the definition. We call nodes that are not included
in any H as pre-subgame, with an induced subtree Ĝ. Note
that Ĝ obeys property (ii) of a subgame; if some infoset is
only partially contained in Ĝ, then it must be partially con-
tained in some subgame, which is disallowed. Consequently,
leaves, infosets, and sequences may be likewise partitioned.
We denote these sets by Ľj , L̂, Ǐi,j , Îi, and Σ̌i,j , Σ̂i.

The game in Figure 1 has two subgames, both starting off
with P2 making his move. Here, P2’s infosets belong to sep-
arate subgames, while P1’s infosets all lie in Ĝ. Similarly, all
of P2’s non-empty sequences lie in a subgame, while all of
P1’s sequences do not. Another valid subgame decomposi-
tion is to have all but the root be in a single subgame.

Subgame Resolving for EFCE
Subgame resolving exploits the sequential nature of EFGs
to refine strategies online. We begin with a correlation
blueprint, typically a guess or approximate of an EFCE.
Definition 7. (Correlation blueprint) A correlation blueprint
ξ0 ∈ Ξ for the game G is an oracle ξ0[σ1, σ2] which can be
accessed in constant time for all σ1 ./ σ2.

Note that blueprint strategies ξ0 may not necessarily be
stored explicitly: all we require is that its entries may be ac-
cessed efficiently. For example, a blueprint may have players
playing independently according to sequence form strategies
ξ(i)(σ), such that ξ0[σ1, σ2] = ξ(1)(σ1) · ξ(2)(σ2) (no corre-
lation between players’ actions in this special blueprint).

At the beginning of the game, players receive recommen-
dations from the blueprint strategy. Once the game enters a
subgame, an equilibrium refinement step is performed only
for that subgame entered, and recommended actions are in-
stead drawn from that refined correlation plan for the rest of
the game. Subgame resolving is an online method; instead
of solving for the equilibrium upfront, it defers part of its
computation to when the game is being played. A generic
algorithm is shown in Algorithm 1.

Refinements of correlation blueprint. Subgame resolv-
ing for EFCEs differs significantly from prior work for zero-
sum and Stackelberg games. This is because we are now up-
dating relevant sequence pairs of ξ0 in the correlation poly-
tope Ξ, which unlike the space of sequence form strategies,
has no obvious hierarchical structure. Fortunately, Defini-
tions 3 and 5 provide enough structure to perform resolving.
Theorem 1. (Independence between subgames) Let the set
Sj contain relevant sequences (i) σ1, σ2 ∈ Ǧj , or (ii)
σ1 ∈ Ĝ, σ2 ∈ Ǧj , or (iii) σ1 ∈ Ǧj , σ2 ∈ Ĝ. Let S0 be the
set of relevant sequence pairs such that σ1, σ2 ∈ Ĝ. Then
{S0, · · · , SJ} forms a partition of relevant sequence pairs.

A relevant sequence pair (σ1, σ2) is pre-subgame, writ-
ten (σ1, σ2) ∈ Ĝ if (σ1, σ2) ∈ S0 and (σ1, σ2) ∈ Ǧj if

Algorithm 1: Subgame Resolving
Input: EFG, blueprint ξ0

1: while game is not over do
2: if currently in some subgame j then
3: if first time in subgame then
4: (*) Refine ξ0 → ξ̃j
5: end if
6: Recommend action according to ξ̃j
7: else
8: Recommend action according to ξ0
9: end if

10: end while

(σ1, σ2) ∈ Sj . Theorem 1 shows exactly one of these must
hold.
Definition 8. (Refinements) For a given blueprint ξ0 ∈ Ξ

and subgame decomposition H, a correlation plan ξ̃ ∈ Ξ is
called a complete refinement if ξ̃[σ1, σ2] = ξ0[σ1, σ2] for all
(σ1, σ2) ∈ Ĝ. Let Ξj be Ξ but restricted to sequence pairs
(σ1, σ2) ∈ Ǧj ∪ Ĝ. We call ξ̃j ∈ Ξj a refinement of subgame
j if ξ̃j [σ1, σ2] = ξ0[σ1, σ2] for all (σ1, σ2) ∈ Ĝ.

For example, in Figure 1, a complete refinement involves
updating all but the first column, since for P2, all but the
empty sequence is in some subgame. For the left subgame,
we have Ξj being the first 3 columns; finding a refinement
involves updating the columns containing `x, rx (sequences
which are contained in the subgame) and dropping the last 2
columns, while respecting the constraints in Definition 3.

Theorem 1 implies that updated entries (shaded entries)
for each refinement do not overlap, hence, refined correla-
tion plans can be combined to form complete refinements.
Let {ξ̃j} contain a refinement for each subgame. Then,
{ξ̃j} induces a complete refinement naturally, ξ̃[σ1, σ2] =

ξ0[σ1, σ2] if (σ1, σ2) ∈ Ĝ and ξ̃j [σ1, σ2] if (σ1, σ2) ∈ Ǧj .
This direct mapping satisfies ξ̃ ∈ Ξ, as no constraint of Ξ
involves sequences pairs belonging to different subgames.

The independence property of sequence pairs extends
to EFCE incentive constraints for trigger sequences within
subgames. For every trigger sequence σ! in Ǧj , the best-
deviating response (see Definition 4) will never have to ref-
erence sequence pairs containing any sequence outside Ǧj .5
These show it may be possible to perform refinements of
subgames independently without solving other entries con-
taining sequences from other subgames. However, indepen-
dence of incentive constraints does not apply to pre-subgame
trigger sequences σ! ∈ Σ̂i. For those sequences, δ∗(ξ, σ!)
will in general depend on refined solutions from multiple,
distinct subgames. Handling these constraints is a primary
challenge addressed in this paper.

Safe refining algorithms An important property when
performing subgame-resolving for independent, uncorre-

5This is intuitively true. Once inside Ǧj , a potential deviating
player will never encounter states outside of Ǧj in the future, and
hence need not consider them.



lated strategies is that of safety, and was the central issue dis-
cussed extensively in solving NE in zero-sum games (Brown
and Sandholm 2017). There, it was observed naive applica-
tion of resolving algorithms can result in solutions which are
of lower quality than the blueprint. The fundamental prob-
lem is that when P1 performed resolving, the best-response
of P2 in the pre-subgame portion differs from the blueprint,
hence whatever initial distribution over states at the begin-
ning of the subgame no longer holds. This phenomenon is
known as unsafe resolving. A similar phenomenon quanti-
fied in terms of exploitability holds for EFCEs.

Definition 9. (Safe refinements) A complete refinement ξ̃ of
ξ0 is safe if for all trigger sequences σ!

δ∗(ξ̃;σ!) ≤ max
(
0, δ∗(ξ0;σ!)

)
,

i.e., the exploitability of ξ̃ for all σ! is 0 or less than the
blueprint. We say that ξ̃ is fully safe if in addition, the social
welfare (assuming no deviations) under ξ̃ is no less than ξ0.
A resolving algorithm is said to be (fully) safe if the complete
refinement induced by all j refinements ξ̃j is (fully) safe.

In safe refinements, players are at least as incentivized to
follow the resolved strategy than the blueprint. Fully safe
refinements ensures further that the social welfare will not
be diminished. Apart from incurring additional computing
costs, there can be no harm in applying fully safe resolving.
Clearly, a fully safe resolving algorithm exists in the form of
one that trivially returns the blueprint.

Resolving with multiple subgames. In Definition 9, we
required that the induced complete refinement ξ̃ be used to
measure safety, and not just the refined strategy of a sub-
game ξ̃j . This may seem odd at first, since the primary ad-
vantages of resolving was that it did not require comput-
ing strategies for subgames not reached in actual play. How-
ever, it turns out that this is necessary. Consider the perspec-
tive of Pi who in the pre-subgame portion of G was rec-
ommended a sequence σ! and was considering deviation. At
that point of decision making, Pi does not know which sub-
game will be reached in the future; however, he knows that
whichever subgame is encountered (if at all), refinement will
be performed. Thus, when contemplating deviation, Pi in
fact computes the value of a best-deviating response to the
complete refinement ξ̃. This is despite the fact that in a sin-
gle playthrough of the game, at most one subgame can be
encountered in reality. Another interpretation is that the me-
diator publishes the refinement algorithm which implicitly
defines the complete ξ̃, which players contemplate best re-
sponses to. Hence, even though the resolving algorithm does
not explicitly compute a complete refinement, it should still
guarantee safety as if it did.

Safe Subgame Resolving Using LPs
Suppose the mediator has thus far given recommendations
based on ξ0 and the players have just entered subgame j.
Following Algorithm 1, the mediator computes a refinement
ξ̃j which he uses for all future recommendations. We now

present a safe refinement algorithm using a LP (a fully safe
variant will be discussed later).

On top of the structural constraints of Ξj , we have 3 cat-
egories (A-C) of additional constraints that ensure safety.
Constraint set (A) enforces safety for trigger sequences σ! ∈
Ǧj , in an manner identical to (1), while constraint sets (B-
C) ensures that the complete refinement ξ̃ is safe; loosely
speaking, (B) contains lower bounds that ensure that fol-
lowing recommendations will yield a high enough payoff
to a player contemplating deviation, while (C) contains up-
per bounds which ensure that players which have deviated
do not get rewarded too much.

(A) Safety for in-subgame triggers For each Pi and each
sequence in subgame j, i.e., σ! = (I !, a!) ∈ Σ̌i,j , we require

µ(ξ̃;σ!) ≥ β∗(ξ̃;σ!)− δ∗(ξ0;σ!) (5)

where the µ, ν have constraints identical to (2), (4). These
constraints only involve sequence (pairs) that lie within Ǧj
and not other subgames, so no modifications are needed.

Computing safe infoset value bounds Now we turn to
constraints (B) and (C), which guarantee safety for trig-
ger sequences in Ĝ. Our approach is to, for each trigger-
sequence σ! = (I, a!), generate a set of linear constraints
which guarantee that the safety for σ! is satisfied, in ac-
cordance to Definition 9. What are some sufficient con-
ditions on µ(ξ̃;σ!) and β(σ′, ξ̃;σ!) such that the safety
condition in Definition 9 is satisfied for σ!? To answer
this, let us consider α = max(0, δ∗(ξ0;σ!)). There are
2 cases. (i) If α = 0, then the blueprint was already
sufficiently unexploitable for σ!. Thus we could afford to
decrease µ(ξ̃;σ!) and increase β(σ′, ξ̃;σ!) relative to the
blueprint—if it leads to better social welfare. (ii) If α ≥ 0,
then σ! was exploitable and we do not want to worsen
exploitability. This can be avoided if we could somehow
ensure µ(ξ, σ!) and β(σ′, ξ̃;σ!) do not decrease or in-
crease respectively. Concretely, in case (i), we can require
β∗(ξ̃;σ!) ≤ “β(σ;σ!) = β∗(ξ0;σ!) − δ∗(ξ0;σ!)/2, and
µ(ξ̃;σ!) ≥ µ̆(σ;σ!) = µ(ξ0, σ

!) + δ∗(ξ0;σ!)/2. In case
(ii), we can require β∗(ξ̃;σ!) ≤ “β(σ;σ!) = β∗(ξ0;σ!), and
µ(ξ̃;σ!) ≥ µ̆(σ;σ!) = µ(ξ0, σ

!). These are sufficient con-
ditions to guarantee that safety is maintained for σ!. Yet, en-
forcing this is not possible, since µ(ξ̃;σ!) and β(σ′, ξ̃;σ!)
can depend on relevant sequence pairs belonging to other
subgames. The trick is to recursively unroll µ and β, main-
taining bounds which guarantee for safety at each step. This
is repeated until we reach infosets belonging to subgames.

Definition 10. (Head infosets) For a subgame j, I ∈ Ii is
a head infoset of subgame j if I ∈ Îi,j and there does not
exist I ′ ≺ I such that I ′ 6∈ Îi. The set of head infosets for
player i in subgame j is denoted by Ih

i,j ⊆ Ǐi,j . I is called
a head infoset if it is a head infoset of some subgame.

(B) Lower bounds on µ(ξ̃, σ!) Recall that µ(ξ̃, σ!) is the
expected utility accrued from leaves (σ1, σ2) ∈ L, where
σ1 � σ!. We can recursively decompose µ(ξ̃, σ!) into values



of infosets, sequences and their summations.

d(σ;σ!) =
(
µ(ξ0, σ)− µ̆(σ;σ!)

)
/
∣∣{I|σ(I) = σ}

∣∣ (6)

v̆(I;σ!) = v(I)− d(σ(I);σ!) (7)

f(I;σ!) = (v(ξ0, I)− v̆(I;σ!))/
∣∣A(I)

∣∣ (8)

µ̆(σ;σ!) = µ(ξ0, σ)− f(I;σ!) I : σ = (I, a) (9)

where v(ξ0, I) =
∑
σ:(I,a),a∈A(I) µ(ξ0, σ), For every σ,

starting from σ!, we compute in (6) the slack, i.e., the differ-
ence between our desired lower bound µ̆(σ) and what was
achieved with the blueprint. In (7), this slack is split equally
between all infosets which have σ as the parent sequence. A
similar process is repeated for infosets in (8) and (9). We al-
ternate between computing lower bounds for sequences and
infosets until we have computed v̆(I) for I ∈ Ihead

i in (7).
We repeat this for all σ! ∈ Ĝ and take the tighter of the
bounds to obtain v̆(Ihead) for all Ihead ∈ Ihead

i .

(C) Upper bounds on β∗(ξ̃;σ!) Recall that β∗ is the value
of the best-deviating response. We can unroll the inequal-
ities using Definition 4 and stop once a head infoset is
reached, i.e., when we encounter a term ν(I, ξ̃;σ!) for some
I ∈ Ihead

i . If these terms were upper-bounded appropriately,
then β∗(ξ̃;σ!) would be upper-bounded. One possible way
is to compute upper bounds recursively

s(σ;σ!) =
(

“β(σ;σ!)− β(σ, ξ0;σ!)
)
/
∣∣{I|σ(I) = σ}

∣∣ (10)

“ν(I;σ!) = ν(I, ξ0;σ!) + s (11)
“β(σ;σ!) = “ν(I;σ!). (12)

At the end of the bounds computation step, we have sets
“Bi,j = {(I, σ!, “ν(I;σ!)} and B̆i,j = {(I, v̆(I))}, con-
taining constraints of the form v(ξ̃; Ihead) ≥ v̆(Ihead) and
ν(Ihead, ξ̃;σ!) ≤ “ν(I;σ!) for some I ∈ Ihead

i,j .

Theorem 2. If ξ̃ satisfies all constraints in B̆i,j and “Bi,j
for all i ∈ {1, 2} and j ∈ [J ], then δ∗(ξ̃;σ!) ≤
max

(
0, δ∗(ξ0;σ!)

)
for all σ! ∈ Ĝ.

Piecing the LP together Once these bounds are com-
puted, enforcing them is simply a matter of placing them on
top of the constraints for trigger sequences in Ǧj in (5). For
lower bounds of the form (I, (̆I)) ∈ B̆i,j , we introduce vari-
ables v(I), where v(I) =

∑
σ:(I,a),a∈A(I) µ(σ) and enforce

v(I) ≥ v̆(I). Note that the auxiliary variables µ(σ) has al-
ready been introduced as part of exploitability of Ǧj when
enforcing (5). For upper bounds (I, σ!, “ν(I;σ!)) ∈ “Bi,j , we
introduce variables ν(I;σ!) and enforce ν(I;σ!) ≤ “ν(I;σ!).
To ensure that ν(I;σ!) is indeed the value of the infoset
given a trigger sequence σ!, we will have to introduce auxil-
iary variables similar to (3), (4) recursively. A summary and
more precise explanation is included in the appendix. This
LP is always feasible, since the blueprint would trivially sat-
isfy all bounds constraints. To achieve full safety, we simply
set the objective to be the component of social welfare cul-
minating from subgame j.

Subgame Resolving with Regret Minimization
Our second algorithm is based on regret minimization. We
solve a saddle-point problem using self-play, utilizing the
scaled extension operator of Farina et al. (2019b) to provide
an efficient regret minimizer over Ξj . This leads to a signif-
icantly more efficient algorithm.

Refinements as a Bilinear Saddle-point Problem First,
we show that the refinement LP may be written as a bilin-
ear saddle point problem, similar to what was done in Fa-
rina et al. (2019a). Observe that a refinement ξ̃j is safe if
and only if the greatest violation of the safety constraints to
be equal to 0. Building on this intuition, we introduce for
each safety constraint, multipliers λδi,σ! , λνi,I,σ! and λvi,I —
for exploitability (in Ǧj), upper bounds, and lower bounds
respectively. These multipliers are non-negative and sum
to 1. Additionally, we introduce variables y̌i,σ! ∈ Y̌i,σ!

for (I !, a!) = σ! ∈ Σ̌i,j . Similarly, for trigger sequences
(I !, a!) = σ! ∈ Σ̂i, we introduce ŷi,σ! ∈ Ŷi,σ! . These y’s
represent the components of the best-deviating responses
to trigger sequences σ!, and whose polytopes can be eas-
ily represented using the sequence-form representation of
Von Stengel (1996). We explain in more detail in the Ap-
pendix. Resolving is equivalent to solving the following bi-
linear saddle point problem:

min
ξ̃j

max
i,λ,y



∑
i,σ!∈Σ̌i,j

[
ξ̃Tj R

δzδi,σ! + ξ̃Tj

(
λδi,σ!b

δ
i,σ!

)]
+∑

i,(I,σ!,·)
∈ “Bi,j

[
ξ̃Tj R

νzνi,σ! + ξ̃Tj

(
λνi,σ!b

ν
i,σ!

)]
+

∑
i,(I,·)∈B̆j

ξ̃Tj
(
λvi,Ib

v
i,I

)


,

(13)

where zδi,σ! = λδi,σ! y̌i,σ! and zδi,σ! = λνi,σ! ŷi,σ! , for appropri-
ately chosen constants R, b (which may vary on ξ0). Hence,
we can treat the refinement problem as a zero-sum game be-
tween a mediator, who chooses a refinement ξ̃j and devia-
tor, who chooses multipliers and best-deviating responses.
This zero-sum game can be solved by running self-play be-
tween two Hannan-consistent regret minimizers and taking
average strategies. A regret minimizer for the deviator can
be constructed efficiently using counterfactual regret mini-
mization (Zinkevich et al. 2007). A regret minimizer over
Ξj is constructed using the decomposition technique used
by Farina et al. (2019b) with some additional tiebreaking
rules to ensure we do not have to "fill-in" sequence pairs in
Ĝ. The algorithm is outlined in Algorithm 2, with the full de-
tails of the modified decomposition algorithm and deviator
polytope presented in the appendix.

Experiments
We evaluate our algorithms using the LP-based and regret
minimization-based refining. We use the benchmark game of
EFCE called Battleship, introduced by Farina et al. (2019a).
This game is played in 2 stages. In the placement stage, play-
ers privately place their ship(s) of size 1 by m on W × H
grid. In the firing stage, players take turns firing at each other



Algorithm 2: Refinement with Regret Minimization
Input: EFG, blueprint ξ0

1: Decompose Ξj into series of scaled extensions.
2: Construct regret RM’er X over Ξj .
3: Construct regret RM’er Y over deviators.
4: while saddle point gap ≥ ε do
5: ξ̃

(t)
j ← X .recommend; y(t) ← Y .recommend

6: X .observeLoss(yt); Y .observeLoss(ξt)
7: end while

over T timesteps, or until a player’s ship is destroyed. Each
shot is at a single tile, and a ship is considered destroyed
when all tiles in the ship are shot at least once. A player gets
1 point for destroying the opponent’s ship, but loses γ points
if his ship is destroyed. If no ship is destroyed by the end of
the game, the game ends in a tie and both players get 0.

We use 2 different correlation blueprints for our exper-
iments, Uniform and Jittered. Both correlation plans are
based on independent player strategies stored using the se-
quence form. That is, ξ0[σ1, σ2] = ξ

(1)
0 (σ1)·ξ(2)

0 (σ2), where
ξ

(1)
0 , ξ

(2)
0 are sequence form strategies for each player. In

Uniform, ξ(i)
0 have actions uniformly at random at each in-

foset. In Jittered, each player has randomly generated behav-
ioral strategies. Here, for infoset I ∈ Ii, action aj ∈ A(I)
is played with probability p(aj ; I) = κI,j/

∑
k κI,k, with

κI,k = 1 +w · εI,k, where each εI,k is drawn independently
and uniformly from [−1, 1] and w ∈ [0, 1] is a width param-
eter governing the level of deviation from uniform strategies.

Subgames are defined based on public information, which
at the k-th step of firing are precisely the locations fired by
each player. We base subgames on the shot history up till
timestep T ′ < T . T ′ balances the trade-off between accu-
racy versus computational costs. For a grid of size n, we
have J =

∏T
k=T−T ′+1 k

2 subgames. When T ′ is small, we
have fewer subgames, but can achieve better social welfare.
All experiments are run on an Apple M1 Chip with 16GB
of RAM with 8 cores. LPs are solved using Gurobi (Gurobi
Optimization, LLC 2021).

Safe resolving with SW maximization We first show us-
ing our LP-based method that ensures fully safe resolving
can lead to significantly higher social welfare as compared to
the blueprint. We set T ′ = 1 and we use ships with m = 1,
i.e., the game is over once any ship is hit. Consequently, the
game is entirely symmetric in terms of location. The NE here
is to play and shoot uniformly at random. Hence, Uniform is
a valid, though not SW-optimal EFCE. Under Uniform, the
exploitability δ∗ under the blueprint is 0, implying that the
complete refinement ξ̃ is also an EFCE. We perform refine-
ment on the first subgame (this without loss of generality due
to symmetry) and compare the SW accumulated from the
subgame under the blueprint and refinement. For Jittered,
we repeated the experiment 10 times with different seeds
and report the mean. The results are reported in Table 1. In
all our experiments, our refined strategy ξ̃j gives a much
higher SW. For example, in the largest example with γ = 2,

n, T |Ξj | γ
Uniform Jittered

J BP Refined BP Refined
3, 2, 382 2 -3.70 -3.70 -3.55 -3.55

9 5 -14.8 -14.8 -14.2 -14.2
4, 3, 3.2e3 2 -3.13 -2.95 -3.24 -3.10
16 5 -12.5 -11.4 -13.0 -11.8

5, 3, 2.3e4 2 -1.92 -1.34 -1.95 -1.25
25 5 -7.68 -4.80 -7.82 -4.32

6, 3, 1.2e5 2 -1.23 -.772 -1.25 -.627
36 5 -4.94 -2.47 -4.99 -1.95

Table 1: Comparison of social welfare between blueprint
(BP) and SW-maximizing safe refinement with ships of size
1. Social welfare is reported at a scale of 1e-2.

Med. Large Huge
W,H 3,2 3,2 3,2
T 4 4 5
m 1 2 2
|Ξ| 3.89M 111M 360M

Figure 2: Left: Most violated incentive constraint of ξ̃ plot
against iteration number. Right: Parameters of game.

SW increases by 4.6e-3. This is not a negligible improve-
ment; since this is applied to all 36 subgames, the expected
improvement in SW of the complete refinement ξ̃ is actually
0.167. |Ξj | is significantly smaller than |Ξ|, such that each
refinement is computed in no more than 10 seconds.

Safe resolving using regret minimization We now
demonstrate the scalability of refinement based on regret
minimization. Our goal here is to demonstrate that subgame
resolving can be performed efficiently for games that are
too large for ξ to even be stored in memory. We run re-
finement using our regret minimization algorithm and report
the "pseudo"-exploitability of ξ̃j (i.e., the value of the inner
maximization over (i, λ, y), (13), or the most violated in-
centive constraint of the LP). We use T ′ = 1, γ = 2 and the
Uniform blueprint. The results are reported in Figure 2. Our
huge instance is several times larger than the largest instance
in Farina et al. (2019b), and it would require a significant
amount of memory to store a full correlation plan ξ̃ . We
find that in practice, resolving requires less than 0.5 seconds
per iteration, while using no more than 2GB of memory.

Conclusion
In this paper, we propose a novel subgame resolving tech-
nique for EFCE. We offer two algorithms, the first based on
LPs and the second uses regret minimization, both of which
consume significantly less compute than full-game solvers.
Our technique is, to the best of our knowledge, the first on-
line algorithm towards solving EFCE. In future, we hope to
expand our work to other equilibria, such as those involving
hindsight rationality (Morrill et al. 2021).
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